Journal of Geodesy

, Volume 90, Issue 1, pp 91–99 | Cite as

Optimized strategy for the calibration of superconducting gravimeters at the one per mille level

  • Michel Van CampEmail author
  • Bruno Meurers
  • Olivier de Viron
  • Thomas Forbriger
Short Note


This paper reports on different sources of errors that occur in the calibration process of a superconducting gravimeter (SG), determined by comparison with a ballistic absolute gravimeter (AG); some of them have never been discussed in the literature. We then provide methods to mitigate the impact of those errors, to achieve a robust calibration estimate at the Open image in new window level. We demonstrate that a standard deviation at the level of Open image in new window can be reached within 48 h by measuring at spring tides and by increasing the AG sampling rate. This is much shorter than what is classically reported in previous empirical studies. Measuring more than 5 days around a tidal extreme does not improve the precision in the calibration factor significantly, as the variation in the error as a function of \(1/\sqrt{N} \) does not apply, considering the decrease in signal amplitude due to the tidal modulation. However, we investigate the precision improvement up to 120 days, which can be useful if an AG is run continuously: at mid-latitude it would require 21 days to ensure a calibration factor at the Open image in new window level with a 99.7 % confidence interval. We also show that restricting the AG measurement periods to tidal extrema can reduce instrument demand, while this does not affect the precision on the calibration factor significantly. Then, we quantify the effect of high microseismic noise causing aliasing in the AG time series. We eventually discuss the attenuation bias that might be induced by noisy time series of the SG. When experiments are performed at the Open image in new window level, 7 are needed to ensure that the error in the calibration estimate will be at the 1 per mille level with a 99 % confidence.


Calibration Superconducting gravimeter Absolute gravimeter  Earth tide 



The work of OdV is financially supported by the Institut Universitaire de France. We thank the editor Roland Klees and three anonymous reviewers for their fruitful comments.


  1. Achilli V, Baldi P, Casula G, Errani M, Focardi S, Guerzoni M, Palmonari F, Raguni G (1995) A calibration system for superconducting gravimeters. Bull Géod 69:73–80CrossRefGoogle Scholar
  2. Baker TF, Bos MS (2003) Validating Earth and ocean tide models using tidal gravity measurements. Geophys J Int. doi: 10.1046/j.1365-246X.2003.01863.x Google Scholar
  3. Banka D, Crossley D (1999) Noise levels of superconducting gravimeters at seismic frequencies. Geophys J Int. doi: 10.1046/j.1365-246X.1999.00913.x Google Scholar
  4. Crossley D, Hinderer J (2009) A review of the GGP network and scientific challenges. J Geodyn 48:299–304CrossRefGoogle Scholar
  5. de Angelis M, Bertoldi A, Cacciapuoti L, Giorgini A, Lamporesi G, Prevedelli M, Saccorotti G, Sorrentino F, Tino GM (2009) Precision gravimetry with atomic sensors. Meas Sci Technol. doi: 10.1088/0957-0233/20/2/022001 Google Scholar
  6. Faller JE, Guo YG, Geschwind J, Niebauer TM, Rinker RL, Xue J (1983) The JILA portable absolute gravity apparatus. Bull Inf Bur Grav Int 53:87–97Google Scholar
  7. Francis O (1997) Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. Int Ass Geod Symp 117:212–218CrossRefGoogle Scholar
  8. Francis O, Niebauer TM, Sasagawa G, Klopping F, Gschwind J (1998) Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder. Geophys Res Lett 25:1075–1078CrossRefGoogle Scholar
  9. Francis O, Hendrickx M (2001) Calibration of the LaCoste-Romberg 906 by comparison with the superconducting gravimeter C021 in Membach (Belgium). J Geod Soc Jpn 47(1):16–21Google Scholar
  10. Frost C, Thompson S (2000) Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc A 163(2):173–189CrossRefGoogle Scholar
  11. Hinderer J, Florsch N, Mäkinen J, Legros H, Faller JE (1991) On the calibration of a superconducting gravimeter using absolute gravity measurements. Geophys J Int. doi: 10.1111/j.1365-246X.1991.tb03907.x Google Scholar
  12. Hinderer J, Amalvict M, Florsch N, Francis O, Makinen J (1998) On the calibration of superconducting gravimeters with the help of absolute gravity measurements. In: Ducarme B, Pâquet P (eds). Proc XIII Int Symp on Earth Tides. Bruxelles, pp 557–564Google Scholar
  13. Hinderer J, Crossley D, Warburton RJ (2007), Gravimetric methods—superconducting gravity meters. In: Herring T, Schubert G (eds) Treatise on Geophysics, vol 3, pp 65–122Google Scholar
  14. Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ. doi: 10.1136/bmj.c2289 Google Scholar
  15. Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210-a Bayesian approach. Geophys J Int. doi: 10.1046/j.1365-246X.2002.01806.x Google Scholar
  16. Meurers B (2001) Superconducting gravimetry in geophysical research today. J Geodet Soc of Jpn 47:300–307Google Scholar
  17. Meurers B (2002) Aspects of gravimeter calibration by time domain comparison of gravity records. Bull Inf Marées Terr 135:10643–10650Google Scholar
  18. Meurers B (2012) Superconducting gravimeter calibration by collocated gravity observations: results from GWR C025. Int J Geophys. doi: 10.1155/2012/954271
  19. Natrella MG (1963) Experimental statistics. In: National Bureau of standards handbook, vol 91. US Dep Of CommerceGoogle Scholar
  20. Niebauer TM, Sasagawa G, Faller J, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia. doi: 10.1088/0026-1394/32/3/004 Google Scholar
  21. Peterson J (1993) Observations and modeling of seismic background noise. In: US Geol Surv Rep. Albuquerque, pp 93–322Google Scholar
  22. Richter B, Wilmes H, Nowak I (1995) The Frankfurt calibration system for relative gravimeters. Metrologia 32:217–223CrossRefGoogle Scholar
  23. Rosat S, Boy JP, Ferhat G et al (2009) Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48(3–5):360–365CrossRefGoogle Scholar
  24. Rosat S, Hinderer J (2011) Noise levels of superconducting gravimeters: updated comparison and time stability. Bull Seismol Soc Am. doi: 10.1785/0120100217
  25. Van Camp M, Wenzel HG, Schott P, Vauterin P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27:37–40CrossRefGoogle Scholar
  26. Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res. doi: 10.1029/2004JB003497 Google Scholar
  27. Virtanen H, Bilker-Koivula M, Mäkinen J, Näränen J, Raja-Halli A, Ruotsalainen H (2014) Comparison between measurements with the superconducting gravimeter T020 and the absolute gravimeter FG5-221 at Metsähovi, Finland in 2003–2012. Bull Inf Marées Terr 148:11923–11928Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michel Van Camp
    • 1
    Email author
  • Bruno Meurers
    • 2
  • Olivier de Viron
    • 3
  • Thomas Forbriger
    • 4
    • 5
  1. 1.Royal Observatory of BelgiumUccleBelgium
  2. 2.Department of Meteorology and GeophysicsUniversity of ViennaViennaAustria
  3. 3.Université de La Rochelle-CNRS UMR 7266, Littoral Environnement et Sociétés (LIENSs)La RochelleFrance
  4. 4.Black Forest Observatory (BFO)WolfachGermany
  5. 5.Geophysical InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations