Advertisement

Journal of Geodesy

, Volume 89, Issue 12, pp 1245–1261 | Cite as

GOCE gradiometry data processing using the Rosborough approach

  • Khosro Ghobadi-Far
  • Mohammad Ali Sharifi
  • Nico Sneeuw
Original Article

Abstract

The Rosborough approach was developed in the 1980s for the modeling of orbit perturbations of altimeter satellites. It is a formalism that is rooted in the so-called time-wise approach, in which gravitational functionals are described as an along-orbit time series. Nevertheless, through a transformation of the orbital variables, the along-orbit functional can be mapped back onto the sphere. As such, the Rosborough formulation is a so-called space-wise approach at the same time. Both the conventional time-wise and the space-wise approaches have been improved and optimized over the past decade. When we explore the utility of the Rosborough approach in this contribution, we do not expect improved solutions for this particular GOCE-based case study. However, we aim to show the special characteristics of the Rosborough approach for processing the GOCE gradiometry data. In particular, we show that this approach can successfully deal with the problems that come with real data like bandwidth limitation and mispointing. Based on the first 71 days of the GOCE gravity gradients, we obtain solutions up till spherical harmonic degree 200. Compared to a high-quality gradiometric-only time-wise model, our solution shows a similar performance with just 8 cm geoid RMS difference in the relevant bandwidth. Moreover, relative contributions from the individual components are provided for the geographically mean gravity gradient components \(T_{xx}\), \(T_{yy}\) and \(T_{zz}\), and for the geographically variable gravity gradient components \(T_{xx}\) and \(T_{yy}\). It is shown that the spatially variable components provide a direct access to understanding the mapping of time-variable error effects on the sphere. For instance, the known geomagnetic equator effect comes out clearly in the variable components of gravity gradients, as do track-specific errors. In conclusion, it is demonstrated that the Rosborough approach is a complementary method to the conventional approaches for GOCE data processing.

Keywords

Rosborough representation Gravity field recovery GOCE Ascending and descending tracks Spatially mean and variable parts 

Notes

Acknowledgments

Jan Martin Brockmann is gratefully acknowledged for providing the gradiometric-only time-wise model based on the GOCE reprocessed EGG_NOM_2 data. Some of the figures of the paper were produced using the Generic Mapping Tools (GMT) (Wessel and Smith 1998). The authors would like to thank the editor and the anonymous reviewers for their helpful comments which led to a clearer presentation of our work.

References

  1. Albertella A, Migliaccio F, Reguzzoni M, Sansò F (2004) Wiener filters and collocation in satellite gradiometry. In: Sansò F (ed) International association of geodesy symposia, V Hotine-Marussi symposium on mathematical geodesy, vol 127. Springer, Berlin, pp 32–38. doi: 10.1007/978-3-662-10735-5_5
  2. Balmino G (1993) Orbit choice and the theory of radial orbit error for altimetry. In: Rummel R, Sansò F (eds) Satellite altimetry in geodesy and oceanography. Lecture notes in earth sciences, vol 50. Springer, Berlin, pp 244–315. doi: 10.1007/BFb0117930
  3. Bosch W (1996) Geoid and orbit corrections from crossover satellite altimetry. Tech. Rep , DGFI internal technical reportGoogle Scholar
  4. Bouman J, Rispens S, Gruber T, Koop R, Schrama E, Visser P, Tscherning CC, Veicherts M (2009) Preprocessing of gravity gradients at the GOCE high-level processing facility. J Geodesy 83(7):659–678. doi: 10.1007/s00190-008-0279-9 CrossRefGoogle Scholar
  5. Brockmann JM, Schuh WD, Krasbutter I, Gruber T (2012) TIM\_RL01 gravity field determination with reprocessed EGG\_NOM\_2 data. Tech. Rep. ESA GO-TN-HPF-GS-0301. https://earth.esa.int/c/document_library/get_file?&folderId=85857&name=DLFE-1908.pdf. Accessed 4 Jan 2015
  6. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh WD (2014) EGM\_TIM\_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi: 10.1002/2014GL061904 CrossRefGoogle Scholar
  7. Cai L, Zhou Z, Hsu H, Gao F, Zhu Z, Luo J (2013) Analytical error analysis for satellite gravity field determination based on two-dimensional fourier method. J Geodesy 87(5):417–426. doi: 10.1007/s00190-013-0615-6 CrossRefGoogle Scholar
  8. Cesare S (2008) GOCE-performance requirements and budgets for the gradiometric mission. Tech. Rep, Thales Alenia Space, TorinoGoogle Scholar
  9. Colombo O (1989) Advanced techniques for high-resolution mapping of the gravitational field. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lecture notes in earth science, vol 25. Springer, New York, pp 335–369Google Scholar
  10. Engelis T (1987) Radial orbit error reduction and sea surface topography determination using satellite altimetry. Tech. Rep. No. 337, Ohio state UniversityGoogle Scholar
  11. ESA (1999) Reports for mission selection, the four candidate earth explorer core missions, gravity field and steady-state ocean circulation mission. Tech. Rep. ESA SP-1233Google Scholar
  12. Fuchs MJ, Bouman J (2011) Rotation of GOCE gravity gradients to local frames. Geophys J Int 187(2):743–753. doi: 10.1111/j.1365-246X.2011.05162.x CrossRefGoogle Scholar
  13. Kaula WM (1966) Theory of satellite geodesy: applications of satellites to geodesy. Blaisdel Publishing company, WalthamGoogle Scholar
  14. Keller W, You RJ (2014) Adaptation of the torus and Rosborough approach to radial base functions. Stud Geophys Geod 58(2):249–268. doi: 10.1007/s11200-013-0157-7 CrossRefGoogle Scholar
  15. Klees R, Koop R, Visser PNAM, Van den Ijssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations. J Geodesy 74(7–8):561–571. doi: 10.1007/s001900000118 CrossRefGoogle Scholar
  16. Klokočník J, Wagner CA, Kostelecky J, Jandová M (1995) The filtering effect of orbit correction on geopotential errors. J Geodesy 70(3):146–157. doi: 10.1007/BF00943690 CrossRefGoogle Scholar
  17. Klokočník J, Li H, Mueller H (1990) The German PAF for ERS-1: investigation of radial orbit error for ERS-1 by means of Rosborough’s formulae. Tech. rep., D-PAF/DGFI ERS-D-roe 31600, Deutsche Geodaet. Forschungs Institue, MünchenGoogle Scholar
  18. Klokočník J, Wagner CA (1994) A test of GEM T2 from GEOSAT crossovers using latitude lumped coefficients. Bull Géodésique 68(2):100–108. doi: 10.1007/BF00819386 CrossRefGoogle Scholar
  19. Koop R (1993) Global gravity field modelling using satellite gravity gradiometry. Tech. Rep. New Series, 38, The Netherlands Geodetic Commission, DelftGoogle Scholar
  20. Migliaccio F, Reguzzoni M, Sansò F (2004a) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geodesy 78(4–5):304–313. doi: 10.1007/s00190-004-0396-z CrossRefGoogle Scholar
  21. Migliaccio F, Reguzzoni M, Sansò F, Tscherning CC (2004b) The performance of the space-wise approach to GOCE data analysis, when statistical homogenization is applied. Newtons Bull 2:60–65Google Scholar
  22. Migliaccio F, Reguzzoni M, Sansò F, Zatelli P (2004c) GOCE: dealing with large attitude variations in the conceptual structure of the space-wise approach. In: Proceeding of the 2nd international GOCE user workshop. FrascatiGoogle Scholar
  23. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  24. Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010) GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686. ESA/ESTECGoogle Scholar
  25. Papoulis A (1984) Signal analysis. McGraw-Hill, New YorkGoogle Scholar
  26. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth (1978–2012) 117(B4). doi: 10.1029/2011JB008916
  27. Peterseim N, Schlicht A, Stummer C, Yi W (2011) Impact of cross winds in polar regions on GOCE accelerometer and gradiometer data. In: Proceedings of the 4th international GOCE user workshop. MünchenGoogle Scholar
  28. Preimesberger T, Pail R (2003) GOCE quick-look gravity solution: application of the semi-analytic approach in the case of data gaps and non-repeat orbits. Stud Geophys Geod 47(3):435–453. doi: 10.1023/A:1024795030800 CrossRefGoogle Scholar
  29. Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geodesy 83(1):13–29. doi: 10.1007/s00190-008-0225-x CrossRefGoogle Scholar
  30. Reigber C (1989) Gravity field recovery from satellite tracking data. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Springer, Berlin, pp 197–234. doi: 10.1007/BFb0010552
  31. Rosborough GW (1986) Satellite orbit perturbations due to the geopotential. Tech. Rep. CSR-86-1, Center for Space research, University of Texas at AustinGoogle Scholar
  32. Rosborough GW, Tapley BD (1987) Radial, transverse and normal satellite position perturbations due to the geopotential. Celest Mech 40(3–4):409–421. doi: 10.2478/arsa-2013-0004 CrossRefGoogle Scholar
  33. Rummel R, Yi W, Stummer C (2011) Goce gravitational gradiometry. J Geodesy 85(11):777–790. doi: 10.1007/s00190-011-0500-0 CrossRefGoogle Scholar
  34. Rummel R, van Gelderen M, Koop R, Schrama E, Sansò F, Brovelli M, Migliaccio M, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Tech. Rep, Nederlandse Commissie Voor Geodesie, DelftGoogle Scholar
  35. Sharifi MA (2006) Satellite to satellite tracking in the space-wise approach. PhD thesis, University of Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2006/2833/pdf/Dissertation_Sharifi.pdf. Accessed 3 Jan 2015
  36. Sharifi MA, Sneeuw N, Ghobadi-Far K (2013b) Analysis of GOCE data based on the Rosborough method. Poster presentation. In: VIII Hotine-Marussi symposium. RomeGoogle Scholar
  37. Sharifi MA, Safari A, Ghobadi-Far K (2013) Rosborough formulation in satellite gravity gradiometry. Artif Satell 48(1):39–50. doi: 10.2478/arsa-2013-0004 CrossRefGoogle Scholar
  38. Siemes C, Haagmans R, Kern M, Plank G, Floberghagen R (2012) Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: methodology and first results. J Geodesy 86(8):629–645. doi: 10.1007/s00190-012-0545-8 CrossRefGoogle Scholar
  39. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. PhD thesis, University of München. http://mediatum.ub.tum.de/doc/601028/601028.pdf. Accessed 3 Jan 2015
  40. Sneeuw N (2003) Space-wise, time-wise, torus and Rosborough representations in gravity field modelling. Space Sci Rev 108(1–2):37–46. doi: 10.1023/A:1026165612224 CrossRefGoogle Scholar
  41. Sneeuw N, Sharifi MA (2015) Rosborough representation in satellite gravimetry. In: International association of geodesy symposia. Springer, Berlin. doi: 10.1007/1345_2015_68
  42. Sneeuw N, Van Gelderen M (1997) The polar gap. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 559–568. doi: 10.1007/BFb0011717
  43. Stummer C, Siemes C, Pail R, Frommknecht B, Floberghagen R (2012) Upgrade of the GOCE Level 1b gradiometer processor. Adv Space Res 49(4):739–752. doi: 10.1016/j.asr.2011.11.027 CrossRefGoogle Scholar
  44. Wermuth M (2008) Gravity field analysis from the satellite missions CHAMP and GOCE. PhD thesis, University of MünchenGoogle Scholar
  45. Wessel P, Smith W (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union (AGU) 79(47):579–579. doi: 10.1029/98EO00426
  46. Xu C, Sideris M, Sneeuw N (2008) The torus approach in spaceborne gravimetry. In: Xu P, Liu J, Dermanis A (eds) International assiciation of geodesy symposia, VI Hotine-Marussi symposium on mathematical geodesy, vol 132. Springer, Berlin, pp 23–28. doi: 10.1007/978-3-540-74584-6_4
  47. Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202. doi: 10.1007/s11200-011-1178-8 CrossRefGoogle Scholar
  48. Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22. doi: 10.1016/j.jog.2013.10.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Khosro Ghobadi-Far
    • 1
  • Mohammad Ali Sharifi
    • 1
    • 2
  • Nico Sneeuw
    • 3
  1. 1.Department of Surveying and Geomatics EngineeringUniversity College of Engineering, University of TehranTehranIran
  2. 2.Research Institute of Geoinformation Technology (RIGT)University College of Engineering, University of TehranTehranIran
  3. 3.Institute of GeodesyUniversität StuttgartStuttgartGermany

Personalised recommendations