Advertisement

Journal of Geodesy

, Volume 89, Issue 12, pp 1217–1231 | Cite as

Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys

  • Karim DouchEmail author
  • Isabelle Panet
  • Gwendoline Pajot-Métivier
  • Bruno Christophe
  • Bernard Foulon
  • Marie-Françoise Lequentrec-Lalancette
  • Michel Diament
Original Article

Abstract

Moving-base gravity gradiometry has proven to be a convenient method to determine the Earth’s gravity field. The ESA mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) has enabled to map the Earth gravity field and its gradients with a resolution of 80 km, leading to significant advances in physical oceanography and solid Earth physics. At smaller scales, airborne gravity gradiometry has been increasingly used during the past decade in mineral and hydrocarbon exploration. In both cases the sensitivity of gradiometers to the short wavelengths of the gravity field is of crucial interest. Here, we quantify and characterize the error on the gravity gradients estimated from measurements performed with a new instrument concept, called GREMLIT, for typical airborne conditions. GREMLIT is an ultra-sensitive planar gravitational gradiometer which consists in a planar acceleration gradiometer together with 3 gyroscopes. To conduct this error analysis, a simulation of a realistic airborne survey with GREMLIT is carried out. We first simulate realistic GREMLIT synthetic data, taking into account the acceleration gradiometer and gyroscope noises and biases and the variation of orientation of the measurement reference frame. Then, we estimate the gravity gradients from these data. Special attention is paid to the processing of the gyroscopes measurements whose accuracy is not commensurate with the ultra-sensitive gradiometer. We propose a method to calibrate the gyroscopes biases with a precision of the order \(10^{-8}\) rad/s. In order to transform the tensor from the measurement frame to the local geodetic frame, we estimate the error induced when replacing the non-measured elements of the gravity gradient tensor by an a priori model. With the appropriate smoothing, we show that it is possible to achieve a precision better than 2E for an along-track spatial resolution of 2 km.

Keywords

Airborne gravitational gradiometry Error analysis  Electrostatic accelerometer 

Notes

Acknowledgments

The authors would like to thank José Cali, Françoise Duquenne, Jérôme Verdun and IGN, for providing the time series of the flight dynamics of the airborne survey in Corsica. This study benefits from a grant from ANR ASTRID and Karim Douch from a PhD grant from ONERA. This is IPGP contribution number 3655.

References

  1. Barnes GJ, Lumley JM, Houghton PI, Gleave RJ (2011) Comparinggravity and gravity gradient surveys. Geophys Prospect 59(1):176–187. doi: 10.1111/j.1365-2478.2010.00900.x
  2. Baum CF (2006) An introduction to modern econometrics using Stata. Stata Press, College StationGoogle Scholar
  3. Bell RE, Anderson R, Pratson L (1997) Gravity gradiometry resurfaces. Lead Edge 16(1):55–59CrossRefGoogle Scholar
  4. Berné S, Gorini C (2005) The gulf of lions: an overview of recent studies within the french margins programme. Mar Pet Geol 22(67):691–693. doi: 10.1016/j.marpetgeo.2005.04.004. http://www.sciencedirect.com/science/article/pii/S0264817205000528. (The Gulf of Lions: an overview of recent studies within the French Margins Programme)
  5. Bosch W (2004) Geodetic application of satellite altimetry. In: Hwang C, Shum C, Li J (eds) Satellite altimetry for geodesy, geophysics and oceanography. International association of geodesy symposia, vol 126, Springer, Berlin, pp 3–21. doi: 10.1007/978-3-642-18861-9_1
  6. Cohen SC, Smith DE (1985) Lageos scientific results: introduction. J Geophys Res Solid Earth 90(B11):9217–9220. doi: 10.1029/JB090iB11p09217 CrossRefGoogle Scholar
  7. Difrancesco D (2007) Advances and challenges in the development and deployment of gravity gradiometer systems. In: EGM 2007 international workshopGoogle Scholar
  8. Douch K, Foulon B, Christophe B, Diament M, Pajot-Métivier G, Panet I (2013) A new planar electrostatic gravity gradiometer for airborne surveys. In: SEG technical program expanded abstracts 2013, pp 1216–1219. doi: 10.1190/segam2013-1122.1
  9. Douch K, Christophe B, Foulon B, Panet I, Pajot-Métivier G, Diament M (2014) Ultra-sensitive electrostatic planar acceleration gradiometer for airborne geophysical surveys. Meas Sci Technol 25(10):105, 902. http://stacks.iop.org/0957-0233/25/i=10/a=105902
  10. Dransfield M (2007) Airborne gravity gradiometry in the search for mineral deposits. Proc Explor 7:341–354Google Scholar
  11. Dransfield MH, Christensen AN (2013) Performance of airborne gravity gradiometers. Lead Edge 32(8):908–922CrossRefGoogle Scholar
  12. Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The goce gravity mission: Esa’s first core earth explorer. Proceedings of the 3rd international GOCE user workshop. European Space Agency Noordwijk, The Netherlands, pp 6–8Google Scholar
  13. Duquenne H, Olesen AV, Forsberg R, Gidskehaug A (2002) Improvement of the gravity field and geoid around Corsica by aerial gravimetry. In: Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece pp. 167–172Google Scholar
  14. Forsberg R, Olesen AV (2010) Airborne gravity field determination. In: Sciences of geodesy-I. Springer, Berlin, pp 83–104Google Scholar
  15. Forsberg R, Hehl K, Bastos L, Giskehaug A, Meyer U (1997) Development of an airborne geoid mapping system for coastal oceanography (agmasco). Gravity, geoid and marine geodesy. Springer, Berlin, pp 163–170CrossRefGoogle Scholar
  16. Forsberg R, Olesen A, Keller K, Møller M, Gidskehaug A, Solheim D (2001) Airborne gravity and geoid surveys in the arctic and baltic seas. In: Proceedings of international symposium on kinematic systems in geodesy, geomatics and navigation (KIS-2001), Banff, pp 586–593Google Scholar
  17. Forsberg R, Olesen AV, Alshamsi A, Gidskehaug A, Ses S, Kadir M, Peter B (2012) Airborne gravimetry survey for the marine area of the united arab emirates. Mar Geod 35(3):221–232. doi: 10.1080/01490419.2012.672874
  18. Giorgi G, Teunissen PJ, Verhagen S, Buist PJ (2010) Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms. Adv Space Res 46(2):118–129CrossRefGoogle Scholar
  19. Gumert W (1998) An historical review of airborne gravity. Lead Edge 17(1):113–116. doi: 10.1190/1.1437808
  20. Hwang C, Hsiao YS, Shih HC, Yang M, Chen KH, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a taiwan airborne gravity survey: data reduction and accuracy assessment. J Geophys Res Solid Earth 112(B4). doi: 10.1029/2005JB004220
  21. Jekeli C (1988) The gravity gradiometer survey system (GGSS). Eos Trans Am Geophys Union 69(8):105–117. doi: 10.1029/88EO00070 Google Scholar
  22. Jekeli C (2006) Airborne gradiometry error analysis. Surv Geophys 27(2):257–275CrossRefGoogle Scholar
  23. Jekeli C (2011) On precision kinematic accelerations for airborne gravimetry. J Geod Sci 1(4):367–378Google Scholar
  24. Knudsen P, Forsberg R, Andersen O, Solheim D, Hipkin R, Haines K, Johannessen J, Hernandez F (2004) The gocina project—an overview and status. In: Procedings of the second international GOCE user workshop “GOCE, The Geoid and Oceanography”. ESA-ESRINGoogle Scholar
  25. Li X (2013) Examination of two major approximations used in the scalar airborne gravimetric system—a case study based on the LCR system. J Geod Sci 3(1):32–39Google Scholar
  26. Li Y, Zhang K, Roberts C, Murata M (2004) On-the-fly GPS-based attitude determination using single-and double-differenced carrier phase measurements. GPS Solut 8(2):93–102Google Scholar
  27. Loubrieu B, Mascle J (2007) Medipmap group. Morpho-Bathymetry of the Mediterranean Sea CIESM & Ifremer Special Publication, Atlases and Maps, one map at 1/3 000 000 1(3.000):000Google Scholar
  28. Nabighian M, Ander M, Grauch V, Hansen R, LaFehr T, Li Y, Pearson W, Peirce J, Phillips J, Ruder M (2005) Historical development of the gravity method in exploration. Geophysics 70(6):63ND–89ND. doi: 10.1190/1.2133785
  29. Novák P, Kern M, Schwarz KP, Sideris M, Heck B, Ferguson S, Hammada Y, Wei M (2003) On geoid determination from airborne gravity. J Geod 76(9–10):510–522. doi: 10.1007/s00190-002-0284-3 Google Scholar
  30. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: Egm 2008. EGU General Assembly pp 13–18Google Scholar
  31. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. doi: 10.1007/s00190-011-0500-0 CrossRefGoogle Scholar
  32. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi: 10.1029/2004GL019920
  33. Touboul P (2001) Space accelerometers: present status. In: Lämmerzahl C, Everitt C, Hehl F (eds) Gyros, clocks, interferometers...: testing relativistic graviy in space. Lecture notes in physics, vol 562. Springer, Berlin, pp 273–291. doi: 10.1007/3-540-40988-2_13
  34. Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geofis Teor Appl 40(3–4):321–327Google Scholar
  35. Uieda L, Bomfim EP, Braitenberg C, Molina E (2011) Optimal forward calculation method of the marussi tensor due to a geologic structure at goce height. In: Proceedings of the 4th international GOCE user workshop. http://fatiando.org/papers/Uieda,etal._2011.pdf
  36. Vaccaro RJ, Zaki AS (2012) Statistical modeling of rate gyros. IEEE Trans Instrum Meas 61(3):673–684CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karim Douch
    • 1
    • 2
    Email author
  • Isabelle Panet
    • 3
  • Gwendoline Pajot-Métivier
    • 3
  • Bruno Christophe
    • 2
  • Bernard Foulon
    • 2
  • Marie-Françoise Lequentrec-Lalancette
    • 4
  • Michel Diament
    • 1
  1. 1.Institut de Physique du Globe de Paris, CNRSUniv Paris Diderot, Sorbonne Paris CitéParisFrance
  2. 2.Onera-The French Aerospace LabChâtillonFrance
  3. 3.IGN LAREG, Univ Paris Diderot, Sorbonne Paris CitéParis Cedex 13France
  4. 4.SHOM, CS 92803Brest Cedex 2France

Personalised recommendations