Advertisement

Journal of Geodesy

, Volume 89, Issue 12, pp 1165–1180 | Cite as

A consistent combination of GNSS and SLR with minimum constraints

  • Susanne GlaserEmail author
  • Mathias Fritsche
  • Krzysztof Sośnica
  • Carlos Javier Rodríguez-Solano
  • Kan Wang
  • Rolf Dach
  • Urs Hugentobler
  • Markus Rothacher
  • Reinhard Dietrich
Original Article

Abstract

In this article, the realization of a global terrestrial reference system (TRS) based on a consistent combination of Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) is studied. Our input data consists of normal equation systems from 17 years (1994–2010) of homogeneously reprocessed GPS, GLONASS and SLR data. This effort used common state of the art reduction models and the same processing software (Bernese GNSS Software) to ensure the highest consistency when combining GNSS and SLR. Residual surface load deformations are modeled with a spherical harmonic approach. The estimated degree-1 surface load coefficients have a strong annual signal for which the GNSS- and SLR-only solutions show very similar results. A combination including these coefficients reduces systematic uncertainties in comparison to the single-technique solution. In particular, uncertainties due to solar radiation pressure modeling in the coefficient time series can be reduced up to 50 % in the GNSS+SLR solution compared to the GNSS-only solution. In contrast to the ITRF2008 realization, no local ties are used to combine the different geodetic techniques. We combine the pole coordinates as global ties and apply minimum constraints to define the geodetic datum. We show that a common origin, scale and orientation can be reliably realized from our combination strategy in comparison to the ITRF2008.

Keywords

Terrestrial reference frame Inter-technique combination Local ties GNSS SLR 

Notes

Acknowledgments

Since the work is based on data of the common effort of Technische Universität München, University of Bern, ETH Zurich and Technische Universität Dresden, we would like to thank all project partners within the project “Geodätische und geodynamische Nutzung reprozessierter GPS-, GLONASS- und SLR-Daten” and for the financial support the Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation. The authors would also like to thank Geoffrey Blewitt and two anonymous reviewers for their comments which helped to improve the manuscript considerably.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. doi: 10.1029/2001JB000561 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09):401. doi: 10.1029/2007JB004949 Google Scholar
  3. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  4. Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf
  5. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294:2342–2345. doi: 10.1126/science.1065328 CrossRefGoogle Scholar
  6. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  7. Boucher C, Altamimi Z, Duhem L (1992) ITRF 91 and its associated velocity field. IERS Technical Note 12Google Scholar
  8. Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS), Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 55. Schweizerische Geodätische KommissionGoogle Scholar
  9. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi: 10.1007/s00190-010-0412-4 CrossRefGoogle Scholar
  10. Coulot D, Berio P, Biancale R, Loyer S, Soudarin L, Gontier AM (2007) Toward a direct combination of space-geodetic techniques at the measurement level: Methodology and main issues. J Geophys Res Solid Earth 112(B5): doi: 10.1029/2006JB004336
  11. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  12. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  13. Farrell W (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797. doi: 10.1029/RG010i003p00761 CrossRefGoogle Scholar
  14. Fritsche M, Dietrich R, Rlke A, Rothacher M, Steigenberger P (2010) Low-degree earth deformation from reprocessed GPS observations. GPS Solut 14:165–175. doi: 10.1007/s10291-009-0130-7 CrossRefGoogle Scholar
  15. Fritsche M, Sośnica K, Rodríguez-Solano C, Steigenberger P, Wang K, Dietrich R, Dach R, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS. GLONASS and SLR observations. J Geod 88(7):625–642. doi: 10.1007/s00190-014-0710-3 CrossRefGoogle Scholar
  16. Gross RS, Eubanks TM, Steppe JA, Freedman AP, Dickey JO, Runge TF (1998) A Kalman-filter-based approach to combining independent Earth-orientation series. J Geod 72(4):215–235. doi: 10.1007/s001900050162 CrossRefGoogle Scholar
  17. Hobiger T, Otsubo T (2014) Combination of GPS and VLBI on the observation level during CONT11—common parameters, ties and inter-technique biases. J Geod 88(11):1017–1028. doi: 10.1007/s00190-014-0740-x CrossRefGoogle Scholar
  18. Kotsakis C (2012) Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J Geod 86(9):755–774. doi: 10.1007/s00190-012-0555-6 CrossRefGoogle Scholar
  19. Kovalevsky J, Mueller I, Kolaczek B (eds) (1989) Reference Frames in Astronomy and Geophysics. Astrophysics and Space Science Library. Kluwer Academic Publishers, Dortrecht/Boston/LondonGoogle Scholar
  20. Lavallée D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111(B05):405. doi: 10.1029/2005JB003784 Google Scholar
  21. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi: 10.1016/j.asr.2012.10.026 CrossRefGoogle Scholar
  22. Ostini L (2012) Analysis and Quality Assessment of GNSS-Derived Parameter Time Series. Ph.D. thesis, Philosophisch-naturwissenschaftliche Fakultät der Universität BernGoogle Scholar
  23. Ostini L, Dach R, Meindl M, Schaer S, Hugentobler U (2009) FODITS: a new tool of the Bernese GPS Software. In: EUREF 2008 ProceedingsGoogle Scholar
  24. Pavlis E (2009) SLRF2008: The ILRS Reference Frame for SLR POD Contributed to ITRF2008. Ocean Surface Topography Science Team Meeting, Seattle, USAGoogle Scholar
  25. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  26. Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS Technical Note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  27. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B03):405. doi: 10.1029/2003JB002500 Google Scholar
  28. Plag HP, Pearlman M (eds) (2009) Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer, Berlin Heidelberg, doi: 10.1007/978-3-642-02687-4_1
  29. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  30. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  31. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schrter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn 59–60:64–71. doi: 10.1016/j.jog.2011.02.003 Mass Transport and Mass Distribution in the System EarthCrossRefGoogle Scholar
  32. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi: 10.1007/s00190-011-0517-4 CrossRefGoogle Scholar
  33. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Bloßfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products pp 1–16. doi: 10.1007/s00190-014-0704-1
  34. Rothacher M (2003) Towards a Rigorous Combination of Space Geodetic Techniques. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids, 18–21 November 2002. Bavarian Academy of Science, Munich, Germany,IERS Technical NoteGoogle Scholar
  35. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the Terrestrial Reference System by a reprocessed global GPS network. J Geophys Res 113(B08):403. doi: 10.1029/2007JB005231 Google Scholar
  36. Rummel R, Beutler G, Dehant V, Gross R, Ilk K, Plag HP, Poli P, Rothacher M, Stein S, Thomas R, Woodworth P, Zerbini S, Zlotnicki V (2009) Global Geodetic Observing System, Springer, Berlin Heidelberg, chap Understanding a dynamic planet: Earth science requirements for geodesy, pp 89–133. doi: 10.1007/978-3-642-02687-4_3
  37. Scherneck HG, Johansson J, Webb F (2000) Ocean loading tides in GPS an rapid variations of the frame origin. In: Schwarz (ed) Geodesy Beyond 2000—The Challanges of the First Decade, Springer, IAG Symposia, vol 121, pp 32–40Google Scholar
  38. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  39. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems. No. 630 in DGK Reihe C, Deutsche Geodätische Kommission bei der Bayerischen Akademie der WissenschaftenGoogle Scholar
  40. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. doi: 10.1007/s00190-012-0567-2 CrossRefGoogle Scholar
  41. Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73. doi: 10.1007/s001900100166 CrossRefGoogle Scholar
  42. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod pp 1–19. doi: 10.1007/s00190-013-0644-1
  43. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B05):402. doi: 10.1029/2005JB003747 Google Scholar
  44. Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  45. Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  46. Thaller D (2008) Inter-technique combination based on homogeneous normal equation systems including station coordinates. Deutsches GeoForschungsZentrum, Earth orientation and troposphere parameters. ScientificTechnicalReportSTR 08/15. doi: 10.2312/GFZ.b103-08153
  47. Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8):529–541. doi: 10.1007/s00190-006-0115-z CrossRefGoogle Scholar
  48. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi: 10.1007/s00190-010-0433-z CrossRefGoogle Scholar
  49. Thaller D, Roggenbuck O, Sośnica K, Mareyen M, Dach R, Jäggi A (2013) Validation of GNSS-SLR local ties by using space ties. IERS Workshop on Local Surveys and Co-locations, Paris, FranceGoogle Scholar
  50. Thaller D, Sośnica K, Dach R, Jggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter Coordinates from GNSS and Combined GNSS-SLR Solutions Using Satellite Co-locations. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, Springer, Berlin Heidelberg, pp 129–134, doi: 10.1007/978-3-642-37222-3_16
  51. van Dam T, Wahr J, Milly P, Shmakin A, Blewitt G, Lavallée D, Larson K (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654. doi: 10.1029/2000GL012120 CrossRefGoogle Scholar
  52. van Dam T, Wahr J (1987) Displacements of the earth’s surface due to atmospheric loading: effect on gravity and baseline measurements. J Geophys Res 92:1281–1286. doi: 10.1029/JB092iB02p01281 CrossRefGoogle Scholar
  53. Williams S (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76:483–494. doi: 10.1007/s00190-002-0283-4 CrossRefGoogle Scholar
  54. Williams S, Bock Y, Fang P, Jamason P, Nikolaidis R, Prawirodirdjo L, Miller M, Johnson D (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B03):412. doi: 10.1029/2003JB002741 Google Scholar
  55. Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B09):401. doi: 10.1029/2005JB004100
  56. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055, doi: 10.1029/97JB01380

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Susanne Glaser
    • 1
    • 2
    Email author
  • Mathias Fritsche
    • 3
  • Krzysztof Sośnica
    • 4
    • 5
  • Carlos Javier Rodríguez-Solano
    • 6
  • Kan Wang
    • 7
  • Rolf Dach
    • 4
  • Urs Hugentobler
    • 6
  • Markus Rothacher
    • 7
  • Reinhard Dietrich
    • 1
  1. 1.Institut für Planetare Geodäsie, Technische Universität DresdenDresdenGermany
  2. 2.Institut für Geodäsie und GeoinformationstechnikTechnische Universität BerlinBerlinGermany
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Astronomical InstituteUniversity of BernBernSwitzerland
  5. 5.Institute of Geodesy and GeoinformaticsWroclaw University of Environmental and Life SciencesWroclawPoland
  6. 6.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  7. 7.Institut für Geodäsie und PhotogrammetrieEidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations