Journal of Geodesy

, Volume 89, Issue 11, pp 1109–1132 | Cite as

An analytical study of PPP-RTK corrections: precision, correlation and user-impact

Original Article

Abstract

PPP-RTK extends the PPP concept by providing single-receiver users, next to orbits and clocks, also information about the satellite phase and code biases, thus enabling single-receiver ambiguity resolution. It is the goal of the present contribution to provide an analytical study of the quality of the PPP-RTK corrections as well as of their impact on the user ambiguity resolution performance. We consider the geometry-free and the geometry-based network derived corrections, as well as the impact of network ambiguity resolution on these corrections. Next to the insight that is provided by the analytical solutions, the closed form expressions of the variance matrices also demonstrate how the corrections depend on network parameters such as number of epochs, number of stations, number of satellites, and number of frequencies. As a result we are able to describe in a qualitative sense how the user ambiguity resolution performance is driven by the data from the different network scenarios.

Keywords

Global navigation satellite systems (GNSS) Precise point positioning (PPP) Integer ambiguity resolution (IAR) PPP-RTK corrections Geometry-free (GF) Geometry-based (GB) Ambiguity dilution of precision (ADOP) 

References

  1. Baarda W (1973) S-transformations and criterion matrices, vol 5(1). Technical report, Netherlands Geodetic Commission, Publ. on Geodesy, New Series, DelftGoogle Scholar
  2. Banville S, Collins P, Zhang W, Langley RB (2014) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61(2):115–124CrossRefGoogle Scholar
  3. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337CrossRefGoogle Scholar
  4. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203CrossRefGoogle Scholar
  5. Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION NTM, pp 720–732Google Scholar
  6. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399CrossRefGoogle Scholar
  7. Geng J, Bock Y (2013) Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J Geod 87(5):449–460CrossRefGoogle Scholar
  8. Geng J, Shi C, Ge M, Dodson AH, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86(8):579–589CrossRefGoogle Scholar
  9. Grejner-Brzezinska DA, Wielgosz P, Kashani I, Smith DA, Spencer PS, Robertson DS, Mader GL et al (2004) An analysis of the effects of different network-based ionosphere estimation models on rover positioning accuracy. J GPS 3(1–2):115–131CrossRefGoogle Scholar
  10. Grejner-Brzezinska DA, Kashani I, Wielgosz P, Smith DA, Spencer PS, Robertson DS, Mader GL (2007) Efficiency and reliability of ambiguity resolution in network-based real-time kinematic GPS. J Surv Eng 133(2):56–65CrossRefGoogle Scholar
  11. Henderson HV, Pukelsheim F, Searle SR (1983) On the history of the Kronecker product. Linear Multilinear Algebra 14(2):113–120CrossRefGoogle Scholar
  12. Heroux P, Kouba J (1995) GPS precise point positioning with a difference. In: Paper presented at geomatics 95, Ottawa, ON, Canada, 13–15 JuneGoogle Scholar
  13. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: global navigation satellite systems: GPS, glonass, galileo, and more. Springer, New YorkGoogle Scholar
  14. Jonkman N, Teunissen P, Joosten P, Odijk D (2000) GNSS long baseline ambiguity resolution: impact of a third navigation frequency. In: Geodesy beyond 2000, IAG symposium, vol 121, pp 349–354Google Scholar
  15. Lannes A, Prieur JL (2013) Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach. J Geod 87(8):709–731CrossRefGoogle Scholar
  16. Lannes A, Teunissen PJG (2011) GNSS algebraic structures. J Geod 85(5):273–290CrossRefGoogle Scholar
  17. Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: Proceedings of the 20th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), pp 839–848Google Scholar
  18. Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88(2):99–112CrossRefGoogle Scholar
  19. Li X, Zhang X (2012) Improving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolution. J Navig 65(03):513–529CrossRefGoogle Scholar
  20. Li X, Ge M, Zhang H, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416CrossRefGoogle Scholar
  21. Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J Geod 86(11):991–1003CrossRefGoogle Scholar
  22. Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise Point Positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS, pp 397–405Google Scholar
  23. Mervart L, Rocken C, Iwabuchi T, Lukes Z, Kanzaki M (2013) Precise point positioning with fast ambiguity resolution-prerequisites, algorithms and performance. In: Proceedings of ION GNSS, pp 1176–1185Google Scholar
  24. Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays, vol 52. Ph.D. thesis, Delft University of Technology, Publication on Geodesy, Netherlands, Geodetic Commission, DelftGoogle Scholar
  25. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492CrossRefGoogle Scholar
  26. Odijk D, Teunissen PJG, Zhang B (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. J Surv Eng 138(4):193–202CrossRefGoogle Scholar
  27. Odijk D, Arora BS, Teunissen PJG (2014) Predicting the success rate of long-baseline GPS + Galileo (partial) ambiguity resolution. J Navig 67(3):385–401CrossRefGoogle Scholar
  28. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. thesis, University of Bern, Bern, SwitzerlandGoogle Scholar
  29. Teunissen P, Jonkman N, Joosten P, Tiberius C (2000) Long baseline 3 frequency differential GNSS. In: Position location and navigation symposium, IEEE 2000, San Diego, CA, pp 7–14. doi: 10.1109/PLANS.2000.838277
  30. Teunissen PTG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, BerlinGoogle Scholar
  31. Teunissen PJG (1997a) A canonical theory for short GPS baselines. Part I: The baseline precision. J Geod 71(6):320–336Google Scholar
  32. Teunissen PJG (1997b) A canonical theory for short GPS baselines. Part IV: Precision versus reliability. J Geod 71(9):513–525Google Scholar
  33. Teunissen PJG (2000) Adjustment theory: an Introduction. Delft University Press, Series on Mathematical Geodesy and PositioningGoogle Scholar
  34. Teunissen PJG, Khodabandeh A (2014) Do GNSS parameters always benefit from integer ambiguity resolution? a PPP-RTK network scenario. In: Proceedings of ION GNSS+. Tampa, Florida, pp 590–600Google Scholar
  35. Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-RTK methods. J Geod 89(3):217–240CrossRefGoogle Scholar
  36. Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  37. Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut Astronaut Aviat 42(4):223–229Google Scholar
  38. Verhagen S (2002) Studying the performance of global navigation satellite systems: a new software tool. GPS world 13(6):60–65Google Scholar
  39. Wielgosz P, Krankowski A, Sieradzki R, Grejner-Brzezinska DA (2008) Application of predictive regional ionosphere model to medium range RTK positioning. Acta Geophys 56(4):1147–1161CrossRefGoogle Scholar
  40. Wubbena G, Schmitz M, Bagg A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of ION GNSS, pp 13–16Google Scholar
  41. Yu X, Zhang X, Liu J, Shi J, Cai C, Gao Y (2011) Performance assessment of long-baseline integer ambiguity resolution with different observation models. In: Proceedings of ION GNSS, Portland, pp 688–698Google Scholar
  42. Zhang B, Teunissen PJG, Odijk D (2011) A novel un-differenced PPP-RTK concept. J Navig 64(S1):S180–S191CrossRefGoogle Scholar
  43. Zhang X, Li P, Guo F (2013) Ambiguity resolution in precise point positioning with hourly data for global single receiver. Adv Space Res 51(1):153–161CrossRefGoogle Scholar
  44. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Spatial Sciences, GNSS Research CentreCurtin University of TechnologyPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations