Advertisement

Journal of Geodesy

, Volume 89, Issue 10, pp 1005–1018 | Cite as

Estimating the yaw-attitude of BDS IGSO and MEO satellites

  • Xiaolei Dai
  • Maorong Ge
  • Yidong Lou
  • Chuang Shi
  • Jens Wickert
  • Harald Schuh
Original Article

Abstract

Precise knowledge and consistent modeling of the yaw-attitude of GNSS satellites are essential for high-precision data processing and applications. As the exact attitude control mechanism for the satellites of the BeiDou Satellite Navigation System (BDS) is not yet released, the reverse kinematic precise point positioning (PPP) method was applied in our study. However, we confirm that the recent precise orbit determination (POD) processing for GPS satellites could not provide suitable products for estimating BDS attitude using the reverse PPP because of the special attitude control switching between the nominal and the orbit-normal mode. In our study, we propose a modified processing schema for studying the attitude behavior of the BDS satellites. In this approach, the observations of the satellites during and after attitude switch are excluded in the POD processing, so that the estimates, which are needed in the reverse PPP, are not contaminated by the inaccurate initial attitude mode. The modified process is validated by experimental data sets and the attitude yaw-angles of the BDS IGSO and MEO satellites are estimated with an accuracy of better than \(9^{\circ }\). Furthermore, the results confirm that the switch is executed when the Sun elevation is about \(4^{\circ }\) and the actual orientation is very close to its target one. Based on the estimated yaw-angles, a preliminary attitude switch model was established and reintroduced into the POD, yielding to a substantial improvement in the orbit overlap RMS.

Keywords

BeiDou Satellite Navigation System (BDS) Yaw-attitude  Reverse precise point positioning  Precise orbit determination 

Notes

Acknowledgments

Xiaolei Dai is financially supported by the China Scholarship Council (CSC) for her study at the German Research Centre for Geosciences GFZ. This work was also partly supported by the National Natural Science Foundation of China (No.: 41374034).

References

  1. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70:714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  2. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47:160–171. doi: 10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  3. Dilssner F (2010) GPS IIF-1 satellite antenna phase center and attitude modelling. Inside GNSS. September, 2010, pp 59–64Google Scholar
  4. Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. In: IGS Workshop, Pasadena, California, USA, 23–27 June, 2014Google Scholar
  5. Guo J, Zhao Q, Geng T, Su X, Liu J (2013) Precise orbit determination for COMPASS IGSO satellites during yaw maneuvers. Lect Notes Electr Eng 245:41–53. doi: 10.1007/978-3-642-37407-4_4
  6. He L, Ge M, Wang J, Wickert J, Schuh H (2013) Experimental study on the precise orbit determination of the BeiDou navigation satellite system. Sensors 13:2911–2928. doi: 10.3390/s130302911 CrossRefGoogle Scholar
  7. Hauschild A, Steigenberger P, Rodriguez-Solano C (2012) QZS-1 Yaw attitude estimation based on measurements from the CONGO network. Navigation 59:237–248. doi: 10.1002/navi.18 CrossRefGoogle Scholar
  8. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13:1–12. doi: 10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  9. Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4:4692. doi: 10.1038/srep04692 Google Scholar
  10. Li M, Qu L, Zhao Q, Guo J, Su X, Li X (2014) Precise point positioning with the BeiDou navigation satellite system. Sensors 14:927–943. doi: 10.3390/s140100927 CrossRefGoogle Scholar
  11. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8:603–609. doi: 10.1007/BF02899825 CrossRefGoogle Scholar
  12. Marquis W, Krier C (2000) Examination of the GPS block IIR solar pressure model. In: Proceedings of ION GPS. ION, Salt Lake City, pp 407–415Google Scholar
  13. Mao Y, Song X, Wang W, Jia X, Wu X (2014) IGSO satellite orbit determining strategy analysis with the yaw-steering and orbit-normal attitude control mode switching. Geomat Inform Sci Wuhan Univ 39(11):1352–1356.doi: 10.13203/j.whugis20130236
  14. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Allende-Alba G (2013) Improving the orbits of GPS block IIA satellites during eclipse seasons. Adv Space Res 52:1511–1529. doi: 10.1016/j.asr.2013.07.013 CrossRefGoogle Scholar
  15. Rodriguez-Solano, C, Hugentobler U, Steigenberger P (2011). Solar radiation pressure and attitude modeling of GNSS satellites. In: AGU Fall Meeting Abstracts. 2011, vol 1, p 0735Google Scholar
  16. Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49(7):1113–1128. doi: 10.1016/j.asr.2012.01.016 CrossRefGoogle Scholar
  17. Springer TA, Beutler G, Rothacher M (1999) Improving the orbit estimates of GPS satellites. J Geod 73:147–157. doi: 10.1007/s001900050230 CrossRefGoogle Scholar
  18. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2:50–62. doi: 10.1007/PL00012757 CrossRefGoogle Scholar
  19. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou satellites with precise positioning. Sci China Earth Sci 55:1079–1086. doi: 10.1007/s11430-012-4446-8 CrossRefGoogle Scholar
  20. Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. Proc. SPIE7285, International Conference on Earth Observation Data Processing and Analysis (ICEODPA), 2008. doi: 10.1117/12.816261
  21. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17:103–119. doi: 10.1007/s10291-012-0264-x
  22. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87:515–525. doi: 10.1007/s00190-013-0625-4 CrossRefGoogle Scholar
  23. Wang W, Chen G, Guo S, Song X, Zhao Q (2013) A study on the Beidou IGSO/MEO satellite orbit determination and prediction of the different yaw control mode. Lect Notes Electr Eng 245:31–40. doi: 10.1007/978-3-642-37407-4_3
  24. Weiss JP, Bar-Sever Y, Bertiger W, Desai SD, Harvey N, Sibthorpe A (2012) Modelling and characterization of the GPS block II/IIA/IIF attitude. In: IGS Workshop, Olsztyn, Poland, 23–27 July, 2012Google Scholar
  25. Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98Google Scholar
  26. Zhao Q, Guo J, Li M, Qu Z, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87:475–486. doi: 10.1007/s00190-013-0622-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaolei Dai
    • 1
    • 2
  • Maorong Ge
    • 2
  • Yidong Lou
    • 1
  • Chuang Shi
    • 1
  • Jens Wickert
    • 2
  • Harald Schuh
    • 2
    • 3
  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Department of Geodesy and Remote SensingGerman Research Centre for Geosciences GFZPotsdamGermany
  3. 3.Department of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations