Journal of Geodesy

, Volume 89, Issue 9, pp 911–924 | Cite as

Optimized scheduling of VLBI UT1 intensive sessions for twin telescopes employing impact factor analysis

Original Article

Abstract

Daily Very Long Baseline Interferometry (VLBI) intensive measurements make an important contribution to the regular monitoring of Earth rotation variations. Since these variations are quite rapid, their knowledge is important for navigation with global navigation satellite system and for investigations in Earth sciences. Unfortunately, the precision of VLBI intensive observations is 2–3 times worse than the precision of regular 24h-VLBI measurements with networks of 5–10 radio telescopes. The major advancement of research in this paper is the improvement of VLBI intensive results by (a) using twin telescopes instead of single telescopes and (b) applying an entirely new scheduling concept for the individual observations. Preparatory investigations of standardintensive sessions suggest that the impact factors of the observations are well suited for the identification of the most influential observations which are needed for the determination of certain parameters within the entire design of a VLBI session. Based on this experience, the scheduling method is designed for optimizing the observations’ geometry for a given network of radio telescopes and a predefined set of parameters to be estimated. The configuration of at least two twin telescopes, or one twin and two single telescopes, offers the possibility of building pairwise sub-nets that observe two different sources simultaneously. In addition to an optimized observing plan, a special parametrization for twin telescopes leads to an improved determination of Earth rotation variations, as it is shown by simulated observations. In general, an improvement of about 50 % in the formal errors can be realized using twin radio telescopes. This result is only due to geometric improvements as higher slew rates of the twin telescopes are not taken into account.

Keywords

Very Long Baseline Interferometry Twin radio telescopes Intensives Scheduling 

References

  1. Baver K, Gipson J, Carter MS, Kingham K (2012) Assessment of the first use of the uniform sky strategy in scheduling the operational IVS-INT01 sessions. In: Behrend D, Baver K (eds) IVS 2012 general meeting proceedings. NASA/CP, pp 251–255Google Scholar
  2. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi: 10.1029/2005JB003629
  3. Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett. 33(7)Google Scholar
  4. Fischer D, Nothnagel A, Kilger R, Schlüter W, Kurihara S, Takashima K (2003) The K4 intensive project 2002 for UT1 determination. In: Schwegmann W, V T (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, 9–10 May 2003, Leipzig, Frankfurt/Leipzig. Bundesamt für Kartographie und Geodäsie, pp 165–170. Available electronically at: http://www.evga.org/files/2003EVGA-proc_Leipzig
  5. Förstner W (1987) Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision. Comput Vis Graph Image Process 40(3):273–310CrossRefGoogle Scholar
  6. Giordano V, Crop S, Bourgeois PY, Kersale Y, Rubiola E, Mrad M, Langham C, Oxborrow M, Schafer W (2011) Cryogenic sapphire microwave oscillators for space, metrology and scientific applications. In: General assembly and scientific symposium, 2011 XXXth URSI, pp 1–4Google Scholar
  7. Gipson J (2012) Sked. VLBI Scheduling Software, NASA Goddard Spaceflight Center. ftp://gemini.gsfc.nasa.gov/pub/sked/sked_Manual_v2012May09.pdf
  8. Gipson JM (2006) Correlation due to station dependent noise in VLBI. In: Behrend D, Baver K (eds) IVS 2006 General meeting proceedings, 9–11 January 2006, Concepción, Greenbelt. NASA/CP-2006-214140, pp 286–290Google Scholar
  9. Gipson JM, MacMillan D, Petrov L (2008) Improved estimation in VLBI through better modeling and analysis. In: Finkelstein A, Behrend, D (eds) The 5th IVS general meeting proceedings, St. Petersburg. Nauka, pp 157–162Google Scholar
  10. Kasdin NJ (1995) Discrete simulation of colored noise and stochastic processes and 1/\(f^\alpha \) power law noise generation. In: Proceedings of the IEEE, vol 83, pp 802–826Google Scholar
  11. Kasdin N, Walter T (1992) Discrete simulation of power law noise. In: Proceedings of the 1992 IEEE frequency control symposium, 27–29 May 1992, Hershey, pp 274–283Google Scholar
  12. Koch K-R (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin, Heidelberg, New York. ISBN 3-540-18840-1Google Scholar
  13. Kolmogorov AN (1941a) Energy dissipation in locally isotropic turbulence. In: Doklady AN SSSR, vol 32, pp 19–21Google Scholar
  14. Kolmogorov AN (1941b) The local structure of turbulence in incompressible viscous fluid for very large reynolds’ numbers. In: Dokl. Akad. Nauk SSSR, vol 30, pp 301–305Google Scholar
  15. Lay DC (2003) Linear algebra and its applications. Addison-Wesley. ISBN 0-201-70970-8Google Scholar
  16. Ma C (1978) Very Long baseline interferometry applied to polar motion, relativity and geodesy. Nasa technical memorandum 79582, Maryland University, MarylandGoogle Scholar
  17. Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic PressGoogle Scholar
  18. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341CrossRefGoogle Scholar
  19. Niemeier W (2002) Ausgleichungsrechnung. de Gruyter, BerlinGoogle Scholar
  20. Nilsson T, Haas R (2008) Modeling tropospheric delays with atmospheric turbulence models. In: Finkelstein A, Behrend D (eds) The 5th IVS general meeting proceedings, St. Petersburg. Nauka, pp 361–370Google Scholar
  21. Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res 115:B03407Google Scholar
  22. Nilsson T, Gradinarsky L, Elgered G (2005) Correlations between slant wet delays measured by microwave radiometry. IEEE Trans Geosci Remote Sens 43(5):1028–1035CrossRefGoogle Scholar
  23. Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Vienna, pp 175–180. Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380. (available electronically at: http://mars.hg.tuwien.ac.at/evga/proceedings/S64_Nilsson)
  24. Nilsson T, Davis JL, Hill EM (2009) Using ground-based GPS to characterize atmospheric turbulence. Geophys Res Lett 36:L16807. doi: 10.1029/2009GL040090
  25. Nothnagel A, Campbell J (1991) Polar motion observed by daily VLBI measurements. In: Proceedings of the AGU chapman conference on geodetic VLBI: monitoring global change, NOAA Technical Report NOS 137 NGS 49, Washington DC, pp 345–354Google Scholar
  26. Pánek P, Kodet J, Procházka I (2013) Accuracy of two-way time transfer via a single coaxial cable. Metrologia 50(1):60–65CrossRefGoogle Scholar
  27. Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system. Progress Report of the IVS VLBI2010 Committee. NASA/TM-2009-214180, p 58Google Scholar
  28. Robertson DS, Carter WE, Campbell J, Schuh H (1985) Daily Earth rotation determinations from IRIS very long baseline interferometry. Nature 316(6027):424–427CrossRefGoogle Scholar
  29. Rutman J (1978) Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. In: Proceedings of the IEEE, vol 66, pp 1048–1075Google Scholar
  30. Scales J, Smith M, Treitel S (2001) Introductory geophysical inverse theory. Samizdat Press GoldenGoogle Scholar
  31. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodesy 81(6):379–387CrossRefGoogle Scholar
  32. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80CrossRefGoogle Scholar
  33. Schuh H, Campbell J (1994) VLBI in geodynamical investigations. Acta Geod Geophys Hu 29:397–420Google Scholar
  34. Schuh H, Wilkin A (1989) Determination of correlation coefficients between VLBI-observables. In: Rius A (ed) Proceedings of the 7th working meeting on European VLBI. CSIC, pp 79–91Google Scholar
  35. Steufmehl H-J (1994) Optimierung von Beobachtungsplänen in der Langbasisinterferometrie (VLBI). PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Frankfurt am Main. Deutsche Geodätische Kommission Bayer. Akad. Wiss., Reihe C, vol 406, ISSN 0071–9196Google Scholar
  36. Sun J, Böhm J, Nilsson T, Krásná H, Böhm S, Schuh H (2014) New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J Geodesy 88(5):449–461CrossRefGoogle Scholar
  37. Tesmer V (2003) Refinement of the stochastic VLBI model: first results. In: Schwegmann W, V T (eds) Proceedings of the 16th working meeting on European VLBI for Geodesy and astrometry, 9–10 May 2003, Leipzig, Frankfurt/Leipzig. Bundesamt für Kartographie und Geodäsie, pp 207–218Google Scholar
  38. Tesmer V (2004) Das stochastische Modell bei der VLBI-Auswertung. PhD thesis, Technische Universität München. Deutsche Geodätische Kommission Bayer. Akad. Wiss. München, Reihe C, vol 573, ISBN 3 7696 5012 3Google Scholar
  39. Trefethen LN, Bau D (1997) Numerical Linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. ISBN 0-89871-3617Google Scholar
  40. Treuhaft RN, Lanyi GE (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265CrossRefGoogle Scholar
  41. Uunila M, Nothnagel A, Leek J (2012) Inflence of source constellations on UT1 derived from IVS INT1 sessions. In: Behrend D, Baver K (eds) IVS 2012 general meeting proceedings. NASA/CP, pp 395–399Google Scholar
  42. Vandenberg N (1999) Interactive/automatic scheduling program. Program Reference Manual. NASA/Goddard Space Flight Center, NVI IncGoogle Scholar
  43. Vennebusch M, Nothnagel A, Kutterer H (2009) Singular value decomposition and cluster analysis as regression diagnostics tools for geodetic applications. J Geodesy 83:877–891CrossRefGoogle Scholar
  44. Wresnik J, Boehm J, Pany A, Schuh H (2009) VLBI2010 simulations at IGG Vienna. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, 24–25 March 2009, Bordeaux, pp 147–150. Université Bordeuax 1—CNRS—Laboratoire d’Astrophysique de Bordeaux. (available electronically at: http://www.u-bordeaux1.fr/vlbi2009/proceedgs/33_Wresnik)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations