Advertisement

Journal of Geodesy

, Volume 89, Issue 9, pp 857–871 | Cite as

Second-degree Stokes coefficients from multi-satellite SLR

  • Mathis BloßfeldEmail author
  • Horst Müller
  • Michael Gerstl
  • Vojtěch Štefka
  • Johannes Bouman
  • Franziska Göttl
  • Martin Horwath
Original Article

Abstract

The long wavelength part of the Earth’s gravity field can be determined, with varying accuracy, from satellite laser ranging (SLR). In this study, we investigate the combination of up to ten geodetic SLR satellites using iterative variance component estimation. SLR observations to different satellites are combined in order to identify the impact of each satellite on the estimated Stokes coefficients. The combination of satellite-specific weekly or monthly arcs allows to reduce parameter correlations of the single-satellite solutions and leads to alternative estimates of the second-degree Stokes coefficients. This alternative time series might be helpful for assessing the uncertainty in the impact of the low-degree Stokes coefficients on geophysical investigations. In order to validate the obtained time series of second-degree Stokes coefficients, a comparison with the SLR RL05 time series of the Center of Space Research (CSR) is done. This investigation shows that all time series are comparable to the CSR time series. The precision of the weekly/monthly \(C_{21}\) and \(S_{21}\) coefficients is analyzed by comparing mass-related equatorial excitation functions \(\chi ^{\text {mass}}_{1,2}\) with geophysical model results and reduced geodetic excitation functions. In case of \(\chi ^{\text {mass}}_{1}\), the annual amplitude and phase of the DGFI solution agrees better with three of four geophysical model combinations than other time series. In case of \(\chi ^{\text {mass}}_{2}\), all time series agree very well to each other. The impact of \(C_{20}\) on the ice mass trend estimates for Antarctica are compared based on CSR GRACE RL05 solutions, in which different monthly \(C_{20}\) time series are used for replacing. We found differences in the long-term Antarctic ice loss of \(12.3\) Gt/year between the GRACE solutions induced by the different \(C_{20}\) SLR time series of CSR and DGFI, which is about 13 % of the total ice loss of Antarctica. This result shows that Antarctic ice mass loss quantifications must be carefully interpreted.

Keywords

Multi-satellite SLR Stokes coefficients C20 Lageos Equatorial excitation functions Antarctic ice mass loss 

Notes

Acknowledgments

The authors want to thank the International Laser Ranging Service (Pearlman et al. 2002, ILRS) for providing the observations to the satellites. The work contributes to the research group ’Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation’ (FOR 1503) of the German Research Foundation (DFG). The authors also want to thank the three anonymous reviewers and the associate editor who helped to improve the quality of the manuscript.

Supplementary material

190_2015_819_MOESM1_ESM.pdf (9.2 mb)
Supplementary material 1 (pdf 9435 KB)

References

  1. Biancale R, Balmino G, Lemoine JM, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber Ch, Bode A, Gruber Th, König R, Massmann FH, Raimondo JC, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophy Res Lett 27(22):3611–3614. doi: 10.1029/2000GL011721 CrossRefGoogle Scholar
  2. Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. GeoForschungsZentrum (GFZ) Scientific Technical Report STR06/01Google Scholar
  3. Bloßfeld M, Müller H, Angermann D (2012) Adjustment of EOP and gravity field parameters from SLR observations. In: Proceedings of the 17th ILRS workshop, pp 292–296, ISBN: 978-3-89888-999-5Google Scholar
  4. Bloßfeld M, Gerstl M, Hugentobler U, Angermann D, Müller H (2014) Systematic effects in LOD from SLR observations. Adv Space Res 54:1049–1063. doi: 10.1016/j.asr.2014.06.009 CrossRefGoogle Scholar
  5. Bloßfeld M, Seitz M (2012) The role of VLBI in the weekly inter-technique combination. In: Behrend D, Baver KD (eds) IVS 2012 general meeting proceedings, NASA/CP-2012-217504, pp 319–323Google Scholar
  6. Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10):1638–1647. doi: 10.1016/j.asr.2007.02.053 CrossRefGoogle Scholar
  7. Böckmann S, Tesmer V (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi: 10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  8. Bouman J, Florberghagen R, Rummel R (2013) More than 50 years of progress in satellite gravimetry. EOS Trans Am Geophysl Union 94(31):269–276CrossRefGoogle Scholar
  9. Bowman B, Tobiska K, Marcos F, Huang C, Lin C, Birke W (2008) A new empirical thermospheric density model jb2008 using new solar and geomagnetic indices. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. doi: 10.2514/6.2008-6438
  10. Cheng MK, Shum CK, Tapley BD (1997) Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 102(B10):22377–22390CrossRefGoogle Scholar
  11. Cheng MK, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi: 10.1029/2010JB000850 Google Scholar
  12. Cheng MK, Ries JC (2012) GRACE Technical Note 05. ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-05_C20_SLR.txt
  13. Cheng MK, Ries JC (2013) GRACE Technical Note 07. ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-07_C20_SLR.txt
  14. Cheng MK, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res 118:1–8. doi: 10.1002/jgrb.50058 Google Scholar
  15. Ciufolini I (1989) LAGEOS 3 and the gravitomagnetic field. NASA workshop on relativistic gravitation experiments in space, Annapolis, NASA, Conf. Publ., vol 3046, p 126Google Scholar
  16. Cohen SC, Smith DE (1985) LAGEOS scientific results: introduction. J Geophys Res 90(B11):9217–9220. doi: 10.1029/JB090iB11p09217 CrossRefGoogle Scholar
  17. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):3186. doi: 10.1029/2001JC001224 CrossRefGoogle Scholar
  18. Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomalies. J Geophys Res 112:C05040. doi: 10.1029/2006JC004035 Google Scholar
  19. Dobslaw H, Dill R, Grötzsch A, Brzeziński A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res 115:B10406. doi: 10.1029/2009JB007127 CrossRefGoogle Scholar
  20. ESA (1999) Gravity field and steady-state ocean circulation mission. Reports for mission selection; the four candidate earth explorer core missions, ESA SP-1233(1)Google Scholar
  21. Flechtner F (2007) AOD1B product description document for product releases 01 to 04. GRACE 327-750 (GR-GFZ-AOD-0001)Google Scholar
  22. Flechtner F, Dahle C, Gruber C, Sasgen I, König R, Michalak G, Neumayer K-H (2013) Status GFZ RL05 and RL05a GRACE L2 products. GRACE Science Team Meeting, AustinGoogle Scholar
  23. Göttl F, Schmidt M, Heinkelmann R, Savcenko R, Bouman J (2012) Combination of gravimetric and altimetric space observations for estimating oceanic polar motion excitations. J Geophys Res 117:C10022. doi: 10.1029/2012JC007915 CrossRefGoogle Scholar
  24. Göttl F (2013) Kombination geodätischer Raumbeobachtungen zur Bestimmung von geophysikalischen Anregungsmechanismen der Polbewegung. dissertation, Deutsche Geodätische Kommission, C series, vol 714. Verlag der Bayerischen Akademie der Wissenschaften, ISBN: 978-3-7696-5126-3 (in German)Google Scholar
  25. Grafarend EW (1984) Variance–covariance component estimation. Theoretical results and geodetic applications. 16’th European Meeting of Statisticians, MarburgGoogle Scholar
  26. Gross RS (2009) An improved empirical model for the effect of long-period ocean tides on polar motion. J Geod 83(7):635–644. doi: 10.1007/s00190-008-0277-y CrossRefGoogle Scholar
  27. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antartica. Geophys J Int 177:849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  28. Ivins ER, James TS, Wahr J, Schrama EOJ, Landerer FW, Simon KM (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res 118(6):3126–3141. doi: 10.1002/jgrb.50208 CrossRefGoogle Scholar
  29. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. doi: 10.1016/j.asr.2007.03.012 CrossRefGoogle Scholar
  30. Jaeggi A, Sośnica K, Thaller D, Beutler G (2012) Validation and estimation of low-degree gravity field coefficients using LAGEOS. In: Proceedings of the 17th ILRS Workshop, pp 302–305Google Scholar
  31. Kaula WM (1966) Theory of Satellite Geodesy—Applications of Satellites to Geodesy. Blaisdell Publishing Company, WalthamGoogle Scholar
  32. Kelso TS, Parkhomenko NN, Shargorodsky VD, Vasiliev VP, Yurasov VS, Nazarenko AI, Tanygin S, Hiles RM (2013) What happened to BLITS? An analysis of the 2013 Jan 22 event. http://www.t.celestrak.com/publications/AMOS/2013/AMOS-2013a
  33. Kucharski D, Lim H-C, Kirchner G, Hwang J-Y (2013) Spin parameters of LAGEOS-1 and LAGEOS-2 spectrally determined from satellite laser ranging data. Adv Space Res 52(7):1332–1338. doi: 10.1016/j.asr.2013.07.007 CrossRefGoogle Scholar
  34. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, GreenbeltGoogle Scholar
  35. Lerch FJ, Klosko SM, Pate GB (1982) A refined gravity model from Lageos (GEM-L2). Geophys Res Lett 9:1263–1266. doi: 10.1029/GL009i011p01263 CrossRefGoogle Scholar
  36. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  37. Matsuo K, Chao BF, Otsubo T, Heki K (2013) Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophys Res Lett 40:4662–4667. doi: 10.1002/grl.50900 CrossRefGoogle Scholar
  38. Nerem RS, Chao BF, Au AY, Chan JC, Klosko SM, Pavlis NK, Williamson RG (1993) Time variations of the Earth’s gravitational field from satellite laser ranging to LAGEOS. Geophys Res Lett 20(7):595–598. doi: 10.1029/93GL00169 CrossRefGoogle Scholar
  39. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  40. Petit G, Luzum B (2010) IERS conventions (2010). IERS Technical Note No. 36, Verlag des Bundesamtes für Kartographie und Geodäsie, ISBN 978-3-89888-989-6Google Scholar
  41. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910. doi: 10.5194/angeo-21-1897-2003 CrossRefGoogle Scholar
  42. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Entin JK, Bosilovich M, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi: 10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  43. Rothacher M, Beutler G, Herring TA (1999) Estimation of nutation using global positioning system. J Geophys Res 104(B3):4835–4859. doi: 10.1029/1998JB900078 CrossRefGoogle Scholar
  44. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118. doi: 10.1016/j.asr.2014.03.010 CrossRefGoogle Scholar
  45. Sakamura C (2014) Gravity recovery and climate experiment. Comparison of degree 60 and degree 96 monthly solutions. GRACE Technical Note 10, CSR-GR-14-01Google Scholar
  46. Shako R, Förste C, Abrikosov O, Bruinsma S, Marty J-C, Lemoine J-M, Flechtner F, Neumayer H, Dahle C (2014) In: Flechtner F, Sneeuw N, Schuh W-D (eds) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. Springer, Berlin, pp 155–161. doi: 10.1007/978-3-642-32135-1_20
  47. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sandberg Sørensen L, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102
  48. Sośnica K, Thaller D, Jäggi A, Beutler G (2012) Sensitivity of lageos orbits to global gravity field models. Art Sat 47(2):47–65. doi: 10.2478/v10018-012-0013-y Google Scholar
  49. Sośnica KJ (2014) Determination of Precise satellite orbits and geodetic parameters using satellite laser ranging. PhD thesis of the Faculty of Science of the University of Bern. http://www.bernese.unibe.ch/publist/2014/book/diss_ks_front
  50. Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette Stella and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. doi: 10.1007/s00190-014-0722-z CrossRefGoogle Scholar
  51. Tapley BD, Watkins MM, Davis GW, Eanes RJ, Poole SR, Rim HJ, Schutz BE, Shum CK, Nerem RS, Lerch FJ, Marshall JA, Klosko SM, Pavlis NK, Williamson RG (1996) The joint gravity model 3. J Geophys Res 101(B12):28029–28049. doi: 10.1029/96JB01645 CrossRefGoogle Scholar
  52. Tapley BD, Shum CK, Ries JC, Poole SR, Abusali PAM, Bettadpur SV, Eanes RJ, Kim MC, Rim HJ, Schutz BE (1997) The TEG-3 geopotential model. IAG Symp Ser 117:453–460. doi: 10.1007/978-3-662-03482-8_61
  53. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi: 10.1126/science.1099192
  54. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4). doi: 10.1029/2002JB002209
  55. Whitehouse PL, Bentley MJ, Milne GA, King MA, Thomas ID(2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change. Geophys J Int 190(3):1146–1482. doi: 10.1111/j.1365-246X.2012.05557.x
  56. Zhou YH, Salstein DA, Chen JL (2006) Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J Geophys Res 111. doi: 10.1029/2005JD006608

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mathis Bloßfeld
    • 1
    Email author
  • Horst Müller
    • 1
  • Michael Gerstl
    • 1
  • Vojtěch Štefka
    • 2
  • Johannes Bouman
    • 1
  • Franziska Göttl
    • 1
  • Martin Horwath
    • 3
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.Astronomical InstituteAcademy of Sciences of the Czech RepublicPragueCzech
  3. 3.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany

Personalised recommendations