Journal of Geodesy

, Volume 89, Issue 8, pp 811–827 | Cite as

The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques

  • Philip L. Woodworth
  • Médéric Gravelle
  • Marta Marcos
  • Guy Wöppelmann
  • Chris W. Hughes


We review the measurement of the mean dynamic topography (MDT) of the Mediterranean using ellipsoidal heights of sea level at discrete tide gauge locations, and across the entire basin using satellite altimetry, subtracting estimates of the geoid obtained from recent models. This ‘geodetic approach’ to the determination of the MDT can be compared to the independent ‘ocean approach’ that involves the use of in situ oceanographic measurements and ocean modelling. We demonstrate that with modern geoid and ocean models there is an encouraging level of consistency between the two sets of MDTs. In addition, we show how important geodetic MDT information can be in judging between existing global ocean circulation models, and in providing insight for the development of new ones. The review makes clear the major limitations in Mediterranean data sets that prevent a more complete validation, including the need for improved geoid models of high spatial resolution and accuracy. Suggestions are made on how a greater amount of reliable geo-located tide gauge information can be obtained in the future.


Tide gauges and GPS Altimeter mean sea surface models Geoid models Mediterranean ocean circulation 



We thank the tide gauge and GPS specialists listed in Table 2 for their help in obtaining GPS survey information. MSL data were obtained from the Permanent Service for Mean Sea Level, while some of the GPS data we have used were obtained via the SONEL data assembly centre at the University of La Rochelle. MSL and GPS data are only available thanks to the institutions which contribute their data freely for research. The altimeter products were produced by Ssalto/Duacs and the CLS Space Oceanography Division, made available through AVISO, and by the Technical University of Denmark. We are also grateful to Thomas Gruber (Technical University of Munich) for the geoid models. We thank Marie-Hélène Rio (CLS, France), Luciana Fenoglio-Marc (University of Darmstadt) and Ole Andersen (Technical University of Denmark) for discussions on these topics. This work was funded partly by the European Space Agency and the UK Natural Environment Research Council. M. Marcos acknowledges a “Ramon y Cajal” contract funded by the Spanish Ministry of Economy.


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85:457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114:C11001. doi: 10.1029/2008JC005179 CrossRefGoogle Scholar
  3. Baker TF, Woodworth PL, Blewitt G, Boucher C, Wöppelmann G (1997) A European network for sea level and coastal land level monitoring. J Marine Syst 13:163–171. doi: 10.1016/S0924-7963(96)00118-2 CrossRefGoogle Scholar
  4. Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2011) Geoid and high resolution sea surface topography modelling in the Mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geod 83:751–772. doi: 10.1007/s00190-008-0292-z CrossRefGoogle Scholar
  5. Becker M, Zerbini S, Baker T, Bürki B, Galanis J, Garate J, Georgiev I, Kahle HG, Kotzev V, Lobazov V, Marson I, Negusini M, Richter B, Veis G, Yuzefovich P (2002) Assessment of height variations by GPS at Mediterranean and Black Sea coast tide gauges from the SELF projects. Glob Planet Change 34:5–35. doi: 10.1016/S0921-8181(02)00103-0 CrossRefGoogle Scholar
  6. Becker S, Brockmann JM, Schuh W-D (2014) Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophys Res Lett 41:2063–2069. doi: 10.1002/2014GL059510 CrossRefGoogle Scholar
  7. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi: 10.1029/2010GL045633 CrossRefGoogle Scholar
  8. Bingham RJ, Haines K, Lea DJ (2014) How well can we measure the ocean’s mean dynamic topography from space? J Geophys Res Oceans 119:3336–3356. doi: 10.1002/2013JC009354 CrossRefGoogle Scholar
  9. Bonnefond P, Exertier P, Laurain O, Thibaut P, Mercier F (2013) GPS-based sea level measurements to help the characterization of land contamination in coastal areas. Adv Space Res 51:1383–1399. doi: 10.1016/j.asr.2012.07.007 CrossRefGoogle Scholar
  10. Bruinsma SL, Förste C, Abrikosov O, Lemoine J-M, Marty J-C, Mulet S, Rio M-H, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41:7508–7514. doi: 10.1002/2014GL062045 CrossRefGoogle Scholar
  11. Calafat FM, Gomis D (2009) Reconstruction of Mediterranean sea level fields for the period 1945–2000. Glob Planet Change 66:225–234. doi: 10.1016/j.gloplacha.2008.12.015 CrossRefGoogle Scholar
  12. Criado-Aldeanueva F, Soto-Navarro FJ, García-Lafuente J (2012) Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: budgets and exchange through the Strait of Gibraltar. Int J Climatol 32:286–302. doi: 10.1002/joc.2268 CrossRefGoogle Scholar
  13. Dobricic S (2005) New mean dynamic topography of the Mediterranean calculated from assimilation system diagnostics. Geophys Res Lett 32:L11606. doi: 10.1029/2005GL022518 CrossRefGoogle Scholar
  14. ESA (2010) GOCE High Level Processing Facility. GOCE Level 2 Product Data Handbook. European Space Agency Document GO-MA-HPF-GS-0110.
  15. Farmer DM, Armi L (1988) The flow of Atlantic water through the Strait of Gibraltar, and the flow of Mediterranean water through the Strait of Gibraltar. Prog Oceanogr 21:1–103. doi: 10.1016/0079-6611(88)90055-9 CrossRefGoogle Scholar
  16. Featherstone WE, Filmer MS (2012) The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res 117:C08035. doi: 10.1029/2012JC007974 Google Scholar
  17. Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs 35 A:120–127. doi: 10.1016/j.jag.2013.10.005
  18. Fenoglio L (1996) Sea surface determination with respect to European vertical datums. PhD Thesis, Deutsche Geodaetische Kommission, C, 464, Munich, GermanyGoogle Scholar
  19. Fenoglio-Marc L (2001) Analysis and representation of regional sea-level variability from altimetry and atmospheric-oceanic data. Geophys J Int 145:1–18. doi: 10.1046/j.1365-246x.2001.00284.x CrossRefGoogle Scholar
  20. Filmer MS (2014) Using models of the ocean’s mean dynamic topography to identify errors in coastal geodetic levelling. Marine Geod 37:47–64. doi: 10.1080/01490419.2013.868383 CrossRefGoogle Scholar
  21. Gilardoni M, Albertella A, Reguzzoni M (2014) The MEGG-C project: mean dynamic topography in the Mediterranean Sea based on GOCE data and Wiener filters. In: Presentation at the fifth international GOCE user workshop, UNESCO, Paris, 25–28 November 2014Google Scholar
  22. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85:845–860. doi: 10.1007/s00190-011-0486-7 CrossRefGoogle Scholar
  23. Gruber T (2014) GOCE gravity field models—overview and performance analysis. In: Presentation at the fifth international GOCE user workshop, UNESCO, Paris, 25–28 November 2014.
  24. Higginson S (2012) Mapping and understanding the mean surface circulation of the North Atlantic: insights from new geodetic and oceanographic measurements. Unpublished PhD thesis, Dalhousie University.
  25. Higginson S, Thompson KR, Woodworth PL, Hughes CW (2015) The tilt of mean sea level along the east coast of North America. Geophys Res Lett 42:1471–1479. doi: 10.1002/2015GL063186
  26. Hirt C, Fecher T, Claessens SJ, Kuhn M, Pail R, Rexer M (2013) New ultra-high resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283. doi: 10.1002/grl.50838 CrossRefGoogle Scholar
  27. Hughes CW, Bingham RJ, Roussenov V, Williams J, Woodworth PL (2015) The effect of Mediterranean exchange flow on European time-mean sea level. Geophys Res Lett 42:466–474. doi: 10.1002/2014GL062654
  28. Intergovernmental Oceanographic Commission (2006) Manual on sea-level measurement and interpretation. An update to 2006, vol 4. Intergovernmental Oceanographic Commission, Manuals and Guides, 14, ParisGoogle Scholar
  29. Intergovernmental Oceanographic Commission (2012) Global Sea Level Observing System (GLOSS): Implementation plan 2012. Intergovernmental Oceanographic Commission. Technical Series, 100, ParisGoogle Scholar
  30. Jordi A, Wang DP (2009) Mean dynamic topography and eddy kinetic energy in the Mediterranean Sea: comparison between altimetry and a 1/16 degree ocean circulation model. Ocean Modell 29:137–146. doi: 10.1016/j.ocemod.2009.04.001 CrossRefGoogle Scholar
  31. Kiliçoğlu A, Direnç A, Yildiz H, Bölme M, Aktuğ B, Simav M, Lenk O (2011) Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Stud Geophys Geod 55:557–578. doi: 10.1007/s11200-010-9023-z. (See also
  32. Kistler R, Collins C, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50 year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  33. Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85:861–879. doi: 10.1007/s00190-011-0485-8 CrossRefGoogle Scholar
  34. Levallois JJ, Maillard J (1970) The new French 1\(^{st}\) order levelling net—practical and scientific consequences. In: Report of the symposium on coastal geodesy, Munich, pp 300–330Google Scholar
  35. Lisitzin E (1974) Sea-level changes. Elsevier, AmsterdamGoogle Scholar
  36. Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. In: Abstract submitted to the international symposium on gravity, geoid and height systems, Venice, Italy, 9–12 October 2012Google Scholar
  37. Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi: 10.1029/2010GL044906 CrossRefGoogle Scholar
  38. Pail R, 15 others (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi: 10.1007/s00190-011-0467-x
  39. Pail R (2013) Global gravity field models and their use in Earth System Research. In: Krisp JM, Meng L, Pail R, Stilla U (eds) Earth observation of global changes (EOGC). Springer, Berlin, pp 3–20Google Scholar
  40. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B4. doi: 10.1029/2011JB008916 Google Scholar
  41. Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158:153–173. doi: 10.1016/S0031-0182(00)00048-1 CrossRefGoogle Scholar
  42. Poulain PM, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42:973–990. doi: 10.1175/JPO-D-11-0159.1
  43. Rio M-H, Poulain PM, Pascual A, Mauri E, Larnicol G, Santoleri R (2007) A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J Marine Syst 65:484–508. doi: 10.1016/j.jmarsys.2005.02.006
  44. Rio M-H, Pascual A, Poulain PM, Menna M, Barceló B, Tintoré J (2014a) Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci 10:731–744. doi: 10.5194/os-10-731-2014
  45. Rio M-H, Mulet S, Picot N (2014b) Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41: doi: 10.1002/2014GL061773
  46. Ross T, Garrett C, Le Traon P-Y (2000) Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27:2949–2952. doi: 10.1029/2000GL011653 CrossRefGoogle Scholar
  47. Rummel R (2012) Height unification using GOCE. J Geod Sci 2(4):355–362. doi: 10.2478/v10156-011-0047-2 Google Scholar
  48. Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Míguez BM, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob Planet Change 98–99:6–17. doi: 10.1016/j.gloplacha.2012.07.007 CrossRefGoogle Scholar
  49. Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES\_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geod 35(S1):3–19. doi: 10.1080/01490419.2012.718231 CrossRefGoogle Scholar
  50. Slobbe DC, Simons FJ, Klees R (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid. J Geod 86:609–628. doi: 10.1007/s00190-012-0543-x CrossRefGoogle Scholar
  51. Tsimplis MN, Shaw AGP, Pascual A, Marcos M, Pasaric M, Fenoglio-Marc L (2008) Can we reconstruct the 20th century sea level variability in the Mediterranean sea on the basis of recent altimetric measurements? In: Barale V, Gade M (eds) Remote sensing of the European seas (eds). Springer Science+Business Media B.V., Berlin, pp 307–318Google Scholar
  52. Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) (2011) Coastal altimetry. Springer, BerlinGoogle Scholar
  53. Woodworth PL, Rickards LJ, Pérez B (2009) A survey of European sea level infrastructure. Nat Hazards Earth Syst Sci 9:927–934.
  54. Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318. doi: 10.2478/v10156-012-004-8 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philip L. Woodworth
    • 1
  • Médéric Gravelle
    • 2
  • Marta Marcos
    • 3
  • Guy Wöppelmann
    • 2
  • Chris W. Hughes
    • 1
    • 4
  1. 1.National Oceanography CentreLiverpoolUK
  2. 2.LIENSs, Université de La Rochelle-CNRSLa RochelleFrance
  3. 3.IMEDEA (UIB-CSIC)EsporlesSpain
  4. 4.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations