Advertisement

Journal of Geodesy

, Volume 89, Issue 8, pp 775–791 | Cite as

CODE’s new solar radiation pressure model for GNSS orbit determination

  • D. ArnoldEmail author
  • M. Meindl
  • G. Beutler
  • R. Dach
  • S. Schaer
  • S. Lutz
  • L. Prange
  • K. Sośnica
  • L. Mervart
  • A. Jäggi
Original Article

Abstract

The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate \(z\) (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.

Keywords

GPS GLONASS Solar radiation pressure ECOM 

References

  1. Bar-Sever Y (1996) A new model for GPS yaw attitude. J Geod 70:714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  2. Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for global positioning system satellites. IPN Progress Report 42–159, Nov 15, 2004Google Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384Google Scholar
  4. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. Int Assoc Geod Symp 134. doi: 10.1007/978-3-642-00860-3_41
  5. Dach R, Hugentobler U, Meindl M, and Fridez P (eds) (2007) The Bernese GPS Software Version 5.0, Astronomical Institute, University of BernGoogle Scholar
  6. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–366CrossRefGoogle Scholar
  7. Dach R, Schaer S, Lutz S, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Annual Center Reports: Center for Orbit Determination in Europe (CODE). pp. 29–40. In: Meindl M, Dach R, Jean Y, Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2011, printed by IGS Central Bureau, Pasadena, California (USA)Google Scholar
  8. Dach R, Schaer S, Lutz S, Baumann C, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Söhne W, Ihde J, Steigenberger P, Hugentobler U (2014) Annual Center Reports: Center for Orbit Determination in Europe (CODE). pp. 21–34. In: Dach R, Jean Y, Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2013, printed by IGS Central Bureau, Pasadena, California (USA)Google Scholar
  9. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  10. Fliegel HF, Gallini TE, Swift ER (1992) Global positioning system radiation force model for geodetic applications. JGR 97(B1):559–568CrossRefGoogle Scholar
  11. Fliegel HF, Gallini TE (1996) Solar force modeling of block IIR global positioning system satellites. J Spacecr Rockets 33(6):863CrossRefGoogle Scholar
  12. Fritsche M, Sośnica K, Rodríguez-Solano CJ, Steigenberger P, Dietrich R, Dach R, Wang K, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS, GLONASS and SLR observations. J Geod 88(7):625–642. doi: 10.1007/s00190-014-0710-3
  13. Griffith J, Ray JR (2012) Sub-daily alias and draconitic errors in the IGS orbits. GPS Solut. doi: 10.1007/s10291-012-0289-1
  14. Hefty J, Rothacher M, Springer TA, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily time resolution gained at the CODE processing center of the IGS. J Geod 74:479–487CrossRefGoogle Scholar
  15. Meindl M (2011) Combined analysis of observations from different global navigation satellite systems. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 83, Eidg. Technische Hochschule Zürich, SwitzerlandGoogle Scholar
  16. Meindl M, Beutler G, Thaller D, Jäggi A, Dach R (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi: 10.1016/j.asr.2012.10.026 CrossRefGoogle Scholar
  17. Montenbruck O, Steigenberger P, Hugentobler U (2014) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod. doi: 10.1007/s00190-014-0774-0 Google Scholar
  18. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  19. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  20. Ray J, Griffiths J, Collilieux X, Rebischung P (2013) Subseasonal GNSS positioning errors. Geophys Res Lett (GRL). doi: 10.1002/2013GL058160
  21. Rodríguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2011) Impact of Earth radiation pressure on GPS position estimates. J Geod. doi: 10.1007/s00190-011-0517-4
  22. Rodríguez-Solano CJ (2014) Impact of non-conservative force modeling on GNSS satellite orbits and global solutions. Ph. D. thesis, Technical University of MunichGoogle Scholar
  23. Rodríguez-Solano CJ, Hugentobler U, Steigenberger P, Blossfeld M, Fritsche M (2014b) Reducing the draconitic errors in GNSS geodetic products. J Geod 88:559–574. doi: 10.1007/s00190-014-0704-1 CrossRefGoogle Scholar
  24. Sośnica K, Jäggi A, Thaller D, Dach R, Beutler G (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. doi: 10.1007/s00190-014-0722-z CrossRefGoogle Scholar
  25. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod. doi: 10.1007/s00190-015-0810-8
  26. Springer TA, Beutler G, Rothacher M (1999a) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62CrossRefGoogle Scholar
  27. Springer TA (1999b) Modeling and validating orbits and clocks using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 60, Eidg. Technische Hochschule Zürich, Switzerland. ISBN-978-3-908440-02-4Google Scholar
  28. Springer TA, Flohrer C, Otten M, Enderle W (2014) ESA reprocessing: advances in GNSS analysis. IGS workshop 2014, California, USAGoogle Scholar
  29. Ziebart M, Cross P, Adhya S (2002) Modeling photon pressure: the key to high-precision GPS satellite orbits. GPS World 13(1):43–50Google Scholar
  30. Ziebart M (2004) Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5):840–848. doi: 10.2514/1.13097 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Arnold
    • 1
    Email author
  • M. Meindl
    • 2
  • G. Beutler
    • 1
  • R. Dach
    • 1
  • S. Schaer
    • 3
  • S. Lutz
    • 3
  • L. Prange
    • 1
  • K. Sośnica
    • 1
    • 4
  • L. Mervart
    • 5
  • A. Jäggi
    • 1
  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Geodesy and PhotogrammetryETH ZurichZürichSwitzerland
  3. 3.Federal Office of TopographyWabernSwitzerland
  4. 4.Institute of Geodesy and GeoinformaticsWrocław University of Environmental and Life SciencesWrocławPoland
  5. 5.Institute of Advanced GeodesyCzech Technical UniversityPrague 6-DejviceCzech Republic

Personalised recommendations