Advertisement

Journal of Geodesy

, Volume 89, Issue 4, pp 377–390 | Cite as

Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

  • F. GöttlEmail author
  • M. Schmidt
  • F. Seitz
  • M. Bloßfeld
Original Article

Abstract

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land–ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Keywords

Polar motion excitation functions Combination of geodetic space observations Separation of individual mass and motion effects 

Notes

Acknowledgments

This study has been carried out within the project P9 “Combined analysis and validation of Earth rotation models and observations” of the research unit FOR 584 “Earth Rotation and Global Dynamic Processes” funded by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank the three anonymous reviewers for their careful reading and constructive comments.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473CrossRefGoogle Scholar
  2. Antonov JI, Seidov D, Boyer TP et al (2010) World Ocean Atlas 2009. In: Levitus S (ed) Salinity, NOAA Atlas NESDIS, 69, vol 2. Government Printing Office, Washingtion D.CGoogle Scholar
  3. Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc Lond Ser A 387:31–73CrossRefGoogle Scholar
  4. Bettadpur S (2012) UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005, Center for Space Research, Technical Report GRACE. The University of Texas at Austin, pp 327–742Google Scholar
  5. Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with International Reference Frame 2008, IERS Earth Orientation Product Centre, Observatoire de Paris. ftp://hpiers.obspm.fr/eop-pc/eop/eopc04/C04.guide
  6. Bloßfeld M, Müller H, Gerstl M, Stefka V, Bouman J, Göttl F, Horwath M (2014) Second degree Stokes coefficients from multi-satellite SLR. J Geod (in review)Google Scholar
  7. Bosch W, Dettmering D, Schwatke C (2014) Multi-mission cross-calibration of satellite altimeters: constructing a long-term data record for global and regional sea level change studies. Remote Sens 6(3):2255–2281CrossRefGoogle Scholar
  8. Box G, Jenkins G (1976) Time series analysis and digital processing., Time series analysis forecasting and controlHolden-Day, CaliforniaGoogle Scholar
  9. Bruinsma S, Lemoine J-M, Biancale R, Valés N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601CrossRefGoogle Scholar
  10. Brzezinski A, Nastula J, Kolaczek B (2009) Seasonal excitions of polar motion estimated from recent geophysical models and observations. J Geodyn 48:235–240CrossRefGoogle Scholar
  11. Chambers DP, Bonin JA (2012) Evaluation of release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868CrossRefGoogle Scholar
  12. Chen JL, Wilson CR, Hu XG, Zhou YH, Taply BD (2004) Oceanic effects on polar motion determined from an ocean model and satellite altimetry: 1993–2001. J Geophys Res 109:B02411Google Scholar
  13. Chen JL, Wilson CR (2005) Hydrological excitations of polar motion, 1993–2002. Geophys J Int 160:833–839CrossRefGoogle Scholar
  14. Chen JL, Wilson CR (2008) Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. J Geophys Res 113:B06402Google Scholar
  15. Chen JL, Wilson CR, Zhou YH (2012) Seasonal excitation of polar motion. J Geodyn 62:8–15CrossRefGoogle Scholar
  16. Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109:B9Google Scholar
  17. Cheng M, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res 118:1–8Google Scholar
  18. Dahle C, Flechtner F, Gruber C, Knig D, Knig R, Michalak G, Neumayer K.-H (2012) GFZ Level-2 Processing Standards Document For Level-2 Product Release 0005, GeoForschungszentrum Potsdam, Scientific Technical Report STR12/02-Data. Potsdam, pp 327–743Google Scholar
  19. Dill R (2002) Der Einfluß von Sekundäreffekten auf die Rotation der Erde, Deutsche Geodätische Kommission, C series, 550, Verlag der Bayerischen Akademie der WissenschaftenGoogle Scholar
  20. Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomalies. J Geophys Res 112:C05040Google Scholar
  21. Dobslaw H, Dill R, Groetzsch A, Brzezinski A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res. doi: 10.1029/2009JB007127
  22. Fofonoff NP, Millard RC (1983) Algorithms for computation of fundamental properties of seawater, Unesco technical papers in marine science, 44Google Scholar
  23. Göttl F (2013) Kombination geodätischer Raumbeobachtungen zur Bestimmung von geophysikalischen Anregungsmechanismen der Polbewegung, Deutsche Geodätische Kommission, C series, 741, Verlag der Bayerischen Akademie der WissenschaftenGoogle Scholar
  24. Göttl F, Seitz F (2008) Contribution of non-tidal oceanic mass variations to polar motion determined from space geodesy and ocean data. In: Sideris MG (ed) Observing our Changing Earth, IAG Symposia, 133. Springer, New York, pp 439–445CrossRefGoogle Scholar
  25. Göttl F, Schmidt M, Heinkelmann R, Savcenko R, Bouman J (2012) Combination of gravimetric and altimetric space observations for estimating oceanic polar motion excitations. J Geophys Res 117:C10022CrossRefGoogle Scholar
  26. Gross RS (2007) Earth rotation variations—long period. In: Geodesy: treaties on geophysics, vol 3. Elsevier, pp 239–294. doi: 10.1016/B978-044452748-6.00057-2
  27. Gross RS (1992) Correspondence between theory and observations of polar motion. Geophys J Int 109:162–170CrossRefGoogle Scholar
  28. Gross RS, Fukumori I, Menemenlis D (2004) Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J Geophys Res 109:B01406Google Scholar
  29. Gross RS (2009) An improved empirical model for the effect of long-period ocean tides on polar motion. J Geod 83(7):544–635CrossRefGoogle Scholar
  30. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29(4–5):375–397CrossRefGoogle Scholar
  31. Hide R, Boggs DH, Dickey JO, Dong D, Gross RS, Jackson A (1996) Topographic core-mantle coupling and polar motion on decadal time-scales. Geophys J Int 125:599–607CrossRefGoogle Scholar
  32. IERS Conventions (2010) IERS Technical Note, 36. In: Petit G, Luzum B (eds) Verlag des Bundesamts fuer Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  33. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  34. Jin S, Chambers DP, Tapley BD (2010) Hydrological and oceanic effects on polar motion from GRACE and models. J Geophys Res 115:B02403Google Scholar
  35. Jin S, Hassan AA, Feng GP (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48CrossRefGoogle Scholar
  36. Kurtenbach E, Eicker A, Mayer-Grr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59:39–48CrossRefGoogle Scholar
  37. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749CrossRefGoogle Scholar
  38. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ and their validation using a hydrological model. J Geod 83:903–913CrossRefGoogle Scholar
  39. Lambeck K (1980) Cambridge monographs on mechanics and applied mathematics., The Earth’s variable rotation: geophysical causes and consequencesCambridge University Press, CambridgeGoogle Scholar
  40. Lemoine F, Klosko S, Cox C, Jonsono T (2006) Time-variable gravity from SLR and DORIS tracing. In: 15th international laser ranging workshopGoogle Scholar
  41. Locarnini RA, Mishonov AV, Antonov JI et al (2010) World Ocean Atlas 2009. In: Levitus S (ed) Temperature, NOAA Atlas NESDIS, 68, vol 1. U.S. Government Printing Office, Washingtion D.CGoogle Scholar
  42. Lombard A, Cazenave A, Le Traon P-Y et al (2005) Contribution of thermal expansion to present-day sea-level change revisited. Glob Planet Change 47:1–16CrossRefGoogle Scholar
  43. Mathews PM, Buffett BA, Herring TA, Shapiro II (1991) Forced nutations of the Earth: influence of inner core dynamics: 2. Numerical results and comparisons. J Geophys Res 96:8243–8257CrossRefGoogle Scholar
  44. Nastula J, Ponte RM, Salstein DA (2007) Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids. Geophys Res Lett 34:L11306Google Scholar
  45. Nastula J, Pasnicka M, Kolaczek B (2011) Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0. Acta Geophys 59(3):561–577CrossRefGoogle Scholar
  46. Nastula J, Gross R, Salstein DA (2012) Oceanic excitation of polar motion: identification of specific oceanic areas important for polar motion excitation. J Geodyn 62:16–23Google Scholar
  47. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Entin JK, Bosilovich M, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394Google Scholar
  48. Saynisch J, Wenzel M, Schröter J (2011) Assimilation of earth rotation parameters into a global ocean model: excitation of polar motion. Nonlinear Process Geophys 18(5):581–585CrossRefGoogle Scholar
  49. Schmeer M, Schmidt M, Bosch W, Seitz F (2012) Separation of mass signals within GRACE monthly gravity field models by means of empirical orthogonal functions. J Geodyn 59–60:124–132CrossRefGoogle Scholar
  50. Seitz F, Schmidt M (2005) Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. J Geophys Res 110:B11406CrossRefGoogle Scholar
  51. Seitz M, Angermann D, Blossfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123CrossRefGoogle Scholar
  52. Seoane L, Nastula J, Bizourad C, Gambis D (2009) The use of gravimetric data from GRACE mission in the understanding of polar motion variations. Geophys J Int 178:614–622CrossRefGoogle Scholar
  53. Seoane L, Biancale R, Gambis D (2012) Agreement between Earth’s rotation and mass displacements as detected by GRACE. J Geodyn 62:49–55Google Scholar
  54. Seoane L, Nastula J, Bizourad C, Gambis D (2011) Hydrological excitation of polar motion derived from GRACE gravity field solutions. Int J Geophys. doi: 10.1155/2011/174396
  55. Wahr J (2005) Polar motion models: angular momentum approach, In: Plag HP, et al (ed) Proceedings of the workshop: forcing of polar motion in the Chandler frequency band—a contribution to understanding international climate changes, April 21–23, 2004, vol. 24, pp 89–102. Cah. du Cent. Eur. de Geodynamique et de Seismol., LuxembourgGoogle Scholar
  56. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30.205–30.229CrossRefGoogle Scholar
  57. Wilson CR, Vicente RO (1990) Maximum likelihood estimates of polar motion parameters. In: McCarthy DD, Carter WE (eds) Variations in Earth rotation, vol 59, pp 151–155. AGU Geophysical Monograph SeriesGoogle Scholar
  58. Zhou YH, Salstein DA, Chen JL (2006) Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J Geophys Res. doi: 10.1029/2005JD006608

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Deutsches Geodätisches ForschungsinstitutMunichGermany
  2. 2.Lehrstuhl für Geodätische Geodynamik, Technische Universität München/Deutsches Geodätisches ForschungsinstitutMunichGermany

Personalised recommendations