Journal of Geodesy

, Volume 89, Issue 4, pp 303–312 | Cite as

Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES

  • Toshimichi Otsubo
  • Robert A. Sherwood
  • Graham M. Appleby
  • Reinhart Neubert
Original Article


To realize the full potential of satellite laser ranging for accurate geodesy, it is crucial that all systematic effects in the measurements are taken into account. This paper derives new values for the so-called center-of-mass corrections for three geodetic satellites that are regularly tracked and used in geodetic studies. Optical responses of the twin satellites, Starlette and Stella, and the LARES satellite are retrieved from kHz single-photon laser-ranging data observed at Herstmonceux and Potsdam. The detection timing inside single-photon systems, C-SPAD-based systems and photomultiplier-based systems is numerically simulated, and the center-of-mass corrections are derived to be in the range of 74 to 82 mm for Starlette and Stella, and 127–135 mm for LARES. The system dependence is below 1 cm, but should not be ignored for millimeter accuracy. The longtime standard center-of-mass correction 75 mm of Starlette and Stella is revealed to be too small for the current laser-ranging stations on average, which is considered to have resulted in a non-negligible systematic error in geodetic products.


Satellite laser ranging Optical response Starlette Stella LARES 



This work was supported by JSPS KAKENHI Grant Number 26400449.


  1. Appleby GM (1992) Satellite signatures in SLR observations. In: Proceedings of 8th international workshop on laser ranging instrumentation, pp 2.1–2.14Google Scholar
  2. Appleby GM (1996) Satellite laser ranging and the Etalon geodetic satellite. Ph.D. Thesis, The University of Aston in Birmingham, UKGoogle Scholar
  3. Arnold DA (1975) Optical transfer function of Starlette retroreflector array. Technical Report RTOP 161–06-02, Smithsonian Astrophysical ObservatoryGoogle Scholar
  4. Arnold DA (2013) Preliminary transfer function of the LARES satellite. In: Proceedings of 18th international workshop on laser ranging, 13-0408Google Scholar
  5. Chen JL, Wilson CR (2008) Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. J Geophys Res 113:B06402Google Scholar
  6. Ciufolini I, Paolozzi A, Koenig R, Pavlis EC, Ries J, Matzner R, Gurzadyan V, Penrose R, Sindoni G, Paris C (2013) Fundamental physics and general relativity with the LARES and LAGEOS satellites. Nucl Phys B 243–244:180–193Google Scholar
  7. Degnan JJ (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sens GE-23(4):398–413Google Scholar
  8. Gibbs P, Potter C, Sherwood RA, Wilkinson M, Benham D, Smith V, Appleby GM (2006) Some early results of kilohertz laser ranging at Herstmonceux. In: Proceedings of 15th international workshop on laser ranging, pp 250–258Google Scholar
  9. Grunwaldt L, Weisheit S, Steinborn J (2013) Upgrade of SLR Station 7841 Potsdam. In: Proceedings of 18th international workshop on laser ranging, 13-Po56Google Scholar
  10. Kirchner G, Koidl F (2004) Graz KHz SLR system: design, experiences and results. In: Proceedings of 14th international workshop on laser ranging, pp 501–506Google Scholar
  11. Kirchner G, Koidl F, Prochazka I, Hamal K (1998) SPAD time walk compensation and return energy dependent ranging. In: Proceedings of the 11th international workshop on laser ranging instrumentation, pp 245–249Google Scholar
  12. Kral L, Prochazka I, Hamal K (2005) Optical signal path delay fluctuations caused by atmospheric turbulence. Opt Lett 30(14):1767–1769CrossRefGoogle Scholar
  13. Kucharski D, Otsubo T, Kirchner G, Koidl F (2010) Spin axis orientation of AJISAI determined from Graz 2 kHz SLR data. Adv Space Res 46(3):251–256CrossRefGoogle Scholar
  14. Kucharski D, Lim H-C, Kirchner G, Koidl F (2014a) Spin parameters of low Earth orbiting satellites Larets and Stella determined from satellite laser ranging data. Adv Space Res 53(1):90–96CrossRefGoogle Scholar
  15. Kucharski D, Lim H-C, Kirchner G, Otsubo T, Bianco G, Hwang J-Y (2014b) Spin axis precession of LARES measured by satellite laser ranging. IEEE Geosci Remote Sens Lett 11(3):646–650CrossRefGoogle Scholar
  16. Matsuo K, Chao BF, Otsubo T, Heki K (2013) Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophys Res Lett 40(17):4662–4667CrossRefGoogle Scholar
  17. Neubert R (1994) An analytical model of satellite signature effects. In: Proceedings of 9th international workshop on laser ranging instrumentation, pp 82–91Google Scholar
  18. Otsubo T, Amagai J, Kunimori H (1999) The center-of-mass correction of the geodetic satellite AJISAI for single-photon laser ranging. IEEE Trans Geosci Remote Sens 37(4):2011–2018CrossRefGoogle Scholar
  19. Otsubo T, Amagai J, Kunimori H, Elphick M (2000) Spin motion of the AJISAI satellite derived from spectral analysis of laser ranging data. IEEE Trans Geosci Remote Sens 38(3):1417–1424CrossRefGoogle Scholar
  20. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 109(B4):9.1–9.10Google Scholar
  21. Paolozzi A, Ciufolini I, Vendittozzi C (2011) Engineering and scientific aspects of LARES satellite. Acta Astronaut 69(3):127–134Google Scholar
  22. Parkhomenko N, Shargorodsky VD, Vasiliev VP, Yurasov V (2013) Accident in orbit. In: Proceedings of 18th international workshop on laser ranging, 13-Po03Google Scholar
  23. Ries J (2008) SLR bias/CoM offset issues, impact on the TRF scale. GGOS Ground Networks and Communications Working Group Meeting, Vienna.
  24. Schwartz JA (1990) Laser ranging error budget for the TOPEX/POSEIDON satellite. Appl Opt 29(25):3590–3596CrossRefGoogle Scholar
  25. Sosnica K, Jaeggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88:789–804CrossRefGoogle Scholar
  26. Vasiliev VP, Shargorodsky VD, Novikov SB, Chubykin AA, Parkhomenko NN, Sadovnikov MA (2007) Progress in laser systems for precision ranging, angle measurements, photometry, and data transfer. ILRS Fall 2007 workshopGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Toshimichi Otsubo
    • 1
  • Robert A. Sherwood
    • 2
  • Graham M. Appleby
    • 2
  • Reinhart Neubert
    • 3
  1. 1.Hitotsubashi UniversityKunitachiJapan
  2. 2.NERC Space Geodesy FacilityEast SussexUK
  3. 3.Deutsches GeoForschungsZentrumPotsdamGermany

Personalised recommendations