Journal of Geodesy

, Volume 89, Issue 3, pp 217–240 | Cite as

Review and principles of PPP-RTK methods

Original Article

Abstract

PPP-RTK is integer ambiguity resolution-enabled precise point positioning. In this contribution, we present the principles of PPP-RTK, together with a review of different mechanizations that have been proposed in the literature. By application of \(\mathcal {S}\)-system theory, the estimable parameters of the different methods are identified and compared. Their interpretation is essential for gaining a proper insight into PPP-RTK in general, and into the role of the PPP-RTK corrections in particular. We show that PPP-RTK is a relative technique for which the ‘single-receiver user’ integer ambiguities are in fact double-differenced ambiguities. We determine the transformational links between the different methods and their PPP-RTK corrections, thereby showing how different PPP-RTK methods can be mixed between network and users. We also present and discuss four different estimators of the PPP-RTK corrections. It is shown how they apply to the different PPP-RTK models, as well as why some of the proposed estimation methods cannot be accepted as PPP-RTK proper. We determine analytical expressions for the variance matrices of the ambiguity-fixed and ambiguity-float PPP-RTK corrections. This gives important insight into their precision, as well as allows us to discuss which parts of the PPP-RTK correction variance matrix are essential for the user and which are not.

Keywords

PPP-RTK Integer ambiguity resolution Ambiguity dilution of precision (ADOP) \(\mathcal {S}\)-bases Common clock (CC) model Distinct clock (DC) model Integer recovery clock (IRC) model Decoupled satellite clock (DSC) model Fractional cycle bias (FCB) model Geometry-free (GF) model Geometry-based (GB) model 

References

  1. Allison T (1991) Multi-observable processing techniques for precise relative positioning. In: Proceedings ION GPS-91. Albuquerque, New Mexico, 11–13 September, pp 715–725Google Scholar
  2. Baarda W (1973) S-transformations and criterion matrices. Tech. rep., Netherlands Geodetic Commission, Publ. on Geodesy, New Series, vol 5(1), DelftGoogle Scholar
  3. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337CrossRefGoogle Scholar
  4. Beutler G, Bock H, Dach R, Fridez P, Gade A, Hugentobler U, Jaggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl P, Walser P (2007) Bernese GPS software version 5.0. Astron. Inst., Univ. of Bern, Bern, SwitzerlandGoogle Scholar
  5. Bisnath S, Collins P (2012) Recent developments in precise point positioning. Geomatica 66(2):103–111CrossRefGoogle Scholar
  6. Bisnath S, Gao Y (2008) Current state of precise point positioning and future prospects and limitations. In: Observing our changing earth, IAG Symp 133:615–623Google Scholar
  7. Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings ION NTM, pp 720–732Google Scholar
  8. Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2008), pp 1315–1322Google Scholar
  9. de Jonge PJ (1998) A processing strategy for the application of the GPS in networks. PhD thesis, Delft University of Technology, Publication on Geodesy, 46, Netherlands Geodetic Commission, DelftGoogle Scholar
  10. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399CrossRefGoogle Scholar
  11. Geng J (2011) Rapid integer ambiguity resolution in GPS precise point positioning. PhD thesis, University of Nottingham, UKGoogle Scholar
  12. Geng J, Bock Y (2013) Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J Geod 87(5):449–460CrossRefGoogle Scholar
  13. Geng J, Meng X, Dodson A, Teferle F (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84(9):569–581CrossRefGoogle Scholar
  14. Geng J, Teferle FN, Meng X, Dodson AH (2011) Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Adv Space Res 47(10):1664–1673CrossRefGoogle Scholar
  15. Geng J, Shi C, Ge M, Dodson AH, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86(8):579–589CrossRefGoogle Scholar
  16. Hernandez-Pajares M, Juan JM, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400–1,000 km and with high geomagnetic activity. Geophys Res Lett 27(13):2009–2012CrossRefGoogle Scholar
  17. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: global navigation satellite systems: GPS, Glonass, Galileo, and more. Springer, New YorkGoogle Scholar
  18. Jonkman N, Teunissen P, Joosten P, Odijk D (2000) GNSS long baseline ambiguity resolution: impact of a third navigation frequency. In: Geodesy Beyond 2000, IAG Symp 121, pp 349–354Google Scholar
  19. Khodabandeh A, Teunissen PJG (2014) Single-epoch GNSS array integrity: an analytical study. IAG Symp 142, accepted for publicationGoogle Scholar
  20. Kouba J, Heroux P (2001) Precise point positioning using IGS orbit and clock products. GPS solut 5(2):12–28CrossRefGoogle Scholar
  21. Lannes A, Prieur JL (2013) Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach. J Geod 87(8):709–731CrossRefGoogle Scholar
  22. Lannes A, Teunissen PJG (2011) GNSS algebraic structures. J Geod 85(5):273–290CrossRefGoogle Scholar
  23. Laurichesse D (2011) The CNES real-time PPP with undifferenced integer ambiguity resolution demonstrator. In: Proceedings of the ION GNSS, pp 654–662Google Scholar
  24. Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: Proceedings of the 20th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2007), pp 839–848Google Scholar
  25. Laurichesse D, Mercier F, Berthias J, Broca P, Cerri L, CNES F (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149CrossRefGoogle Scholar
  26. Li T, Wang J, Laurichesse D (2013a) Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization. GPS Solut, pp 1–14Google Scholar
  27. Li X, Ge M, Zhang H, Wickert J (2013b) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416CrossRefGoogle Scholar
  28. Li X, Ge M, Lu C, Zhang Y, Wang R, Wickert J, Schuh H (2014) High-rate GPS seismology using real-time precise point positioning with ambiguity resolution. Geoscience and remote sensing, IEEE transactions on, pp 1–15. doi:10.1109/TGRS.2013.2295373
  29. Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geod 86(11):991–1003CrossRefGoogle Scholar
  30. Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise point positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS, pp 397–405Google Scholar
  31. Mervart L, Rocken C, Iwabuchi T, Lukes Z, Kanzaki M (2013) Precise point positioning with fast ambiguity resolution-prerequisites, algorithms and performance. In: Proceedings of ION GNSS, pp 1176–1185Google Scholar
  32. Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. Ph.D. thesis, Delft University of Technology, Publication on Geodesy, 52, Netherlands, Geodetic Commission, DelftGoogle Scholar
  33. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492CrossRefGoogle Scholar
  34. Odijk D, Teunissen PJG, Zhang B (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. J Survey Eng 138(4):193–202CrossRefGoogle Scholar
  35. Odijk D, Arora BS, Teunissen PJG (2014a) Predicting the success rate of long-baseline GPS + Galileo (partial) ambiguity resolution. J Navigat 1–17. doi:10.1017/S037346331400006X
  36. Odijk D, Teunissen PJG, Khodabandeh A (2014b) Single-frequency PPP-RTK: theory and experimental results. IAG Symp Earth Edge: Sci Sustain Planet 139:571–578Google Scholar
  37. Rao CR (1973) Linear statistical inference and its applications, vol 2. Wiley, New JerseyCrossRefGoogle Scholar
  38. Shi J (2012) Precise point positioning integer ambiguity resolution with decoupled clocks. PhD thesis, University of Calgary, CanadaGoogle Scholar
  39. Shi J, Gao Y (2013) A comparison of three PPP integer ambiguity resolution methods. GPS Solut (published online)Google Scholar
  40. Teunissen PJG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, BerlinGoogle Scholar
  41. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82CrossRefGoogle Scholar
  42. Teunissen PJG (1997a) A canonical theory for short GPS baselines. Part I: the baseline precision. J Geod 71(6):320–336CrossRefGoogle Scholar
  43. Teunissen PJG (1997b) A canonical theory for short GPS baselines. Part IV: precision versus reliability. J Geod 71(9):513–525CrossRefGoogle Scholar
  44. Teunissen PJG (1997c) The geometry-free GPS ambiguity search space with a weighted ionosphere. J Geod 71(6):370–383CrossRefGoogle Scholar
  45. Teunissen PJG (1997d) On the GPS widelane and its decorrelating property. J Geod 71(9):577–587CrossRefGoogle Scholar
  46. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612CrossRefGoogle Scholar
  47. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  48. Teunissen PJG (2000) Adjustment theory: an introduction. Delft University Press, series on Mathematical Geodesy and PositioningGoogle Scholar
  49. Teunissen PJG (2002) The parameter distributions of the integer GPS model. J Geod 76(1):41–48CrossRefGoogle Scholar
  50. Teunissen PJG (2012) A-PPP: array-aided precise point positioning with global navigation satellite systems. Signal Process IEEE Trans 60(6):2870–2881CrossRefGoogle Scholar
  51. Teunissen PJG, de Bakker PF (2012) Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances. J Geod 1–17Google Scholar
  52. Teunissen PJG, Khodabandeh A (2013) BLUE, BLUP and the Kalman filter: some new results. J Geod 87(5):461–473CrossRefGoogle Scholar
  53. Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut, Astronaut Aviat 42(4):223–229Google Scholar
  54. Wubbena G (1989) The GPS adjustment software package-GEONAP-concepts and models. In: International geodetic symposium on satellite positioning l, Las Cruces, New Mexico, 13–17 March, pp 452–461Google Scholar
  55. Wubbena G, Schmitz M, Bagg A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of ION GNSS, pp 13–16Google Scholar
  56. Zhang B, Teunissen PJG, Odijk D (2011) A novel un-differenced PPP-RTK concept. J Navig 64(S1):S180–S191CrossRefGoogle Scholar
  57. Zhang X, Li P (2013) Assessment of correct fixing rate for precise point positioning ambiguity resolution on a global scale. J Geod 87(6):579–589CrossRefGoogle Scholar
  58. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.GNSS Research Centre, Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations