Advertisement

Journal of Geodesy

, Volume 89, Issue 2, pp 121–139 | Cite as

Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

  • J. SaynischEmail author
  • I. Bergmann-Wolf
  • M. Thomas
Original Article

Abstract

To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model’s initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

Keywords

Data assimilation GRACE satellite gravimetry Time variant ocean mass distribution GRACE error estimation  Correction of atmospheric forcing 

Notes

Acknowledgments

We thank Lars Nerger for his insightful comments and the opportunity to use his Parallel Data Assimilation Framework. This study could not have been done without ERA-Interim data provided by the ECMWF, GRACE data from the ITG, the CSR, the JPL and the GFZ and the ocean bottom pressure recorder observations provided by Andreas Macrander. The model simulations are calculated at the German Climate Computing Center and the study was funded by the German Research Foundation, which is much appreciated.

References

  1. Bergmann I, Dobslaw H (2012) Short-term transport variability of the Antarctic circumpolar current from satellite gravity observations. J Geophys Res Oceans 117:05044CrossRefGoogle Scholar
  2. Bingham RJ, Hughes CW (2008) The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model. Geophys Res Lett 35(3):03602CrossRefGoogle Scholar
  3. Bonin JA, Chambers DP (2011) Evaluation of high-frequency oceanographic signal in GRACE data: implications for de-aliasing. Geophys Res Lett 38:17608CrossRefGoogle Scholar
  4. Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298(3–4):263–274Google Scholar
  5. Chambers DP (2006) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Lett 33(17):17603CrossRefGoogle Scholar
  6. Chambers DP, Bonin JA (2012) Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8(5):859–868CrossRefGoogle Scholar
  7. Chaudhuri AH, Ponte MR, Forget G, Heimbach P (2013) A comparison of atmospheric reanalysis surface products over the ocean and implications for uncertainties in air-sea boundary forcing. J Clim 26:153–170CrossRefGoogle Scholar
  8. Dill R (2008) Hydrological model LSDM for operational Earth rotation and gravity field variations, Technical Report STR08/09, Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrumGoogle Scholar
  9. Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomalies. J Geophys Res Oceans 112(C05040):05040CrossRefGoogle Scholar
  10. Eanes R (2000) SLR solutions from the University of Texas Center for Space Research, Geocenter from TOPEX SLR/DORIS, 1992–2000, IERS Spec. Bur. for Gravity/ Geocent., Pasadena. http://sbgg.jpl.nasa.gov/dataset.html
  11. Flechtner F (2007) AOD1B product description document, GRACE 327–750, rev. 3.1. Technical report, GFZ German Research Centre for GeosciencesGoogle Scholar
  12. Greatbatch RJ (1994) A note on the representation of steric sea-level in models that conserve volume rather than mass. J Geophys Res Oceans 99(C6):12767–12771CrossRefGoogle Scholar
  13. Köhl A, Siegismund F, Stammer D (2012) Impact of assimilating bottom pressure anomalies from grace on ocean circulation estimates. J Geophys Res 117:04032CrossRefGoogle Scholar
  14. Kurtenbach E, Eicker A, Mayer-Guerr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59(SI):39–48CrossRefGoogle Scholar
  15. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81(11):733–749CrossRefGoogle Scholar
  16. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  17. Macrander A, Böning C, Boebel O, Schröter J (2010) Validation of GRACE gravity fields by in-situ data of ocean bottom pressure. In: Flechtner FM, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) Advanced technologies in Earth sciences. System earth via geodetic-geophysical space techniques. Springer, Berlin, Heidelberg, pp 169–185, ISBN:978-3-642-10227-1Google Scholar
  18. Nerger L, Hiller W (2012) Software for ensemble-based data assimilation systems—implementation strategies and scalability. J Cageo 55:110–118Google Scholar
  19. Nerger L, Danilov S, Kivman G, Hiller W, Schröter J (2007) Data assimilation with the ensemble Kalman filter and the SEIK filter applied to a finite element model of the North Atlantic. J Mar Syst 65(1–4):288–298CrossRefGoogle Scholar
  20. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev 129(5):1194–1207CrossRefGoogle Scholar
  21. Pham DT, Verron J, Gourdeau L (1998) Singular evolutive Kalman filters for data assimilation in oceanography. Comptes Rendus Acad Sci Ser II A 326(4):255–260Google Scholar
  22. Quinn KJ, Ponte RM (2008) Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models. J Geophys Res Oceans 113(C12): 12013CrossRefGoogle Scholar
  23. Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Int 181(2):762–768Google Scholar
  24. Quinn KJ, Ponte RM (2011) Estimating high frequency ocean bottom pressure variability. Geophys Res Lett 38:08611CrossRefGoogle Scholar
  25. Quinn KJ, Ponte RM (2012) High frequency barotropic ocean variability observed by GRACE and satellite altimetry. Geophys Res Lett 39:07603CrossRefGoogle Scholar
  26. Sakumura C, Bettadpur S, Bruinsma S (2014) Ensemble prediction and intercomparison analysis of GRACE timevariable gravity field models. J Geophys Res 41(5):1389–1397Google Scholar
  27. Sasgen I, Martinec Z, Bamber J (2010) Combined GRACE and InSAR estimate of West Antarctic ice mass loss. J Geophys Res Earth Surf 115:04010CrossRefGoogle Scholar
  28. Saynisch J, Thomas M (2011) Ensemble Kalman-filtering of earth rotation observations with a global ocean model. J Geodyn 62:24–29CrossRefGoogle Scholar
  29. Saynisch J, Wenzel M, Schröter J (2011a) Assimilation of Earth rotation parameters into a global ocean model: excitation of polar motion. Nonlinear Process Geophys 18(5):581–585Google Scholar
  30. Saynisch J, Wenzel M, Schröter J (2011b) Assimilation of Earth rotation parameters into a global ocean model: length of day excitation. J Geod 85(2):67–73Google Scholar
  31. Schrama EJO, Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J Geophys Res Solid Earth 116:02407CrossRefGoogle Scholar
  32. Steffen H, Petrovic S, Mueller J, Schmidt R, Wuensch J, Barthelmes F, Kusche J (2009) Significance of secular trends of mass variations determined from GRACE solutions. J Geodyn 48(3–5, SI):157–165CrossRefGoogle Scholar
  33. Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  34. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):08402CrossRefGoogle Scholar
  35. Thomas M, Sündermann J, Maier-Reimer E (2001) Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys Res Lett 28(12):2457–2460CrossRefGoogle Scholar
  36. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907–4924CrossRefGoogle Scholar
  37. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Toward a climate data assimilation system: Status update of ERA Interim. Technical report, ECMWF NewsletterGoogle Scholar
  38. Vianna ML, Menezes VV, Chambers DP (2007) A high resolution satellite-only GRACE-based mean dynamic topography of the South Atlantic Ocean. Geophys Res Lett 34(24):24604CrossRefGoogle Scholar
  39. Vinogradova NT, Ponte RM, Stammer D (2007) Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys Res Lett 34(3):03608CrossRefGoogle Scholar
  40. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229CrossRefGoogle Scholar
  41. Wenzel M, Schröter J (2007) The global ocean mass budget in 1993–2003 estimated from sea level change. J Phys Oceanogr 37(2):203–213CrossRefGoogle Scholar
  42. Werth S, Guentner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515Google Scholar
  43. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res Oceans 113(C6):06015CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Earth System ModellingPotsdamGermany
  2. 2.Department of Earth Sciences, Institute of MeteorologyFreie Universität BerlinBerlinGermany

Personalised recommendations