Journal of Geodesy

, Volume 89, Issue 1, pp 1–11 | Cite as

Laser ranging data analysis for a colocation campaign of French Transportable Laser Ranging System (FTLRS) in Tahiti

  • X. Wang
  • P. Bonnefond
  • P. Exertier
  • F. Deleflie
  • D. Coulot
  • R. Biancale
  • J. M. Lemoine
  • J. C. Poyard
  • C. Courde
  • J. P. Barriot
  • F. Barlier
Original Article

Abstract

Tahiti is a unique geodetic site located in the south Pacific Ocean where few observatories exist nearby. The American mobile station MOBLAS-8 was installed in Tahiti in 1998, and GPS and DORIS systems were also deployed in its vicinity in order to develop this site into one of the fundamental colocated sites of the International Terrestrial Reference Frame. In order to make a new estimate of the colocation differences between the different techniques, a campaign of the French Transportable Laser Ranging System (FTLRS) was conducted in Tahiti between April and October 2011. The FTLRS was deployed close to the existing equipment. Observations for LAGEOS 1, LAGEOS 2 and Starlette were studied, and the solutions to the local ties between FTLRS, MOBLAS-8, DORIS and GPS were evaluated. Our results of the geodetic local-ties between laser stations and GPS agree well with the measurements made by the Institut National de l’Information Géographique et Forestière (IGN) during the campaign, with differences less than 2 mm in the vertical direction. The laser station range biases as a function of satellites are also presented, \(-3\) (\(\pm \)2) mm for MOBLAS-8 and 3 (\(\pm \)3)  mm for FTLRS, respectively. In addition, we investigated the role of time bias (ranging from a few hundreds of nanoseconds to one microsecond) given by the Time Transfer by Laser Link experiment, which shows a limited impact on the present SLR analysis. We also compared the coordinates of the three available techniques at Tahiti, i.e., laser, GPS and DORIS. We found the accuracy of laser solutions still needs to be improved, so that the SLR at Tahiti could contribute more effectively to the tracking of satellites and thus to the international reference frame. This study is useful in evaluating the SLR and other space techniques in order to prepare the deployment of new equipment in Tahiti in the near future.

Keywords

Positioning Laser ranging Reference frame Space geodesy 

Notes

Acknowledgments

This work is supported by the Geoazur/OCA/CNRS. We thank CNES and NASA for supporting the campaign in Tahiti. We also thank all the colleagues from France and USA who participated in this campaign and made observations for the FTLRS and the MOBLAS-8. X. Wang thanks Dr. Jean-Charles Marty (CNES) for the use of the GINS software.

References

  1. Altamimi Z (2005) ITRF and co-location sites. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of IERS workshop on site co-location, Matera, Italy, 23–24 Oct 2003. IERS technical note, no. 33Google Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4 (ISSN: 0949–7714)
  3. Altamimi Z, Collilieur X, Métivier L (2012) Analysis and results of ITRF2008. Technical report, IERS technical note, no. 37Google Scholar
  4. Barlier F, Berger C, Falin JL et al (1978) A thermospheric model based on satellite drag data. Ann Geophys 34:9–24Google Scholar
  5. Barlier F, Berger C, Bonnefond P et al (2001) Laser-based validation of GLONASS orbits by short-arc technique. J Geod 75:600–612. doi:10.1007/s001900100179 CrossRefGoogle Scholar
  6. Beckley BD, Lemoine FG, Luthcke SB, et al. (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi:10.1029/2007GL030002
  7. Bizouard C, Gambis D (2009) The combined solution c04 for earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) IAG symposium, Munich, Germany, 09–14 Oct 2006, vol 134Google Scholar
  8. Bonnefond P, Exertier P, Schaeffer P et al (1995) Satellite altimetry from a short-arc orbit technique: application to the Mediterranean. J Geophys Res 100:25365–25382. doi:10.1029/95JC02692 CrossRefGoogle Scholar
  9. Bonnefond P, Born G, Exertier P et al (2003) Calibrating the Jason-1 measurement system: initial initial results from the Corsica and Harvest verification experiments. Adv Space Res 32:2135–2140. doi:10.1016/S0273-1177(03)90534-5 CrossRefGoogle Scholar
  10. Boucher C (2005) ITRF, combinations and site co-location. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of IERS workshop on site co-location, Matera, Italy, 23–24 Oct 2003. IERS technical note, no. 33Google Scholar
  11. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32:L14405. doi:10.1029/2005GL022964 CrossRefGoogle Scholar
  12. Cheng M, Tapley BD (1999) Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 104:2667–2681. doi:10.1029/1998JB900036 CrossRefGoogle Scholar
  13. Cheng M, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res 118:740–747. doi:10.1002/jgrb.50058 CrossRefGoogle Scholar
  14. Coulot D, Berio P, Biancale R et al (2007) Toward a direct combination of space-geodetic techniques at the measurement level: Methodology and main issues. J Geophys Res (Solid Earth) 112:B05410. doi:10.1029/2006JB004336
  15. Degnan JJ (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sens 23:398–413. doi:10.1109/TGRS.1985.289430 CrossRefGoogle Scholar
  16. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  17. Exertier P, Bonnefond P, Nicolas J et al (2001) Contributions of satellite laser ranging to past and future radar altimetry missions. Surv Geophys 22:491–507. doi:10.1023/A:1015624418639 CrossRefGoogle Scholar
  18. Exertier P, Nicolas J, Berio P et al (2004) The role of laser ranging for calibrating Jason-1: the Corsica tracking campaign. Mar Geod 27:333–340CrossRefGoogle Scholar
  19. Exertier P, Samain E, Bonnefond P, Guillemot P (2010) Status of the T2L2/Jason2 experiment. Adv Space Res 46:1559–1565. doi:10.1016/j.asr.2010.06.028 CrossRefGoogle Scholar
  20. Exertier P, Samain E, Martin N et al (2014) Time transfer by laser link: aata analysis and validation to the ps level. Adv Space Res (submitted)Google Scholar
  21. Fadil A, Sichoix L, Barriot JP et al (2011) Evidence for a slow subsidence of the tahiti island from gps, doris, and combined satellite altimetry and tide gauge sea level records. Comptes Rendus Geosci 343:331–341Google Scholar
  22. Feissel-Vernier M, Bail KL, Berio P et al (2006) Geocentre motion measured with DORIS and SLR, and predicted by geophysical models. J Geod 80:637–648. doi:10.1007/s00190-006-0079-z CrossRefGoogle Scholar
  23. Förste C, Schmidt R, Stubenvoll R et al (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346. doi:10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  24. Gourine B, Kahlouche S, Exertier P et al (2008) Corsica SLR positioning campaign (2002 and 2005) for satellite altimetry calibration missions. Mar Geod 31:103–116. doi:10.1080/01490410802053658 CrossRefGoogle Scholar
  25. Jin S, Zhang LJ, Tapley BD (2011) The understanding of length-of-day variations from satellite gravity and laser ranging measurements. Geophys J Int 184:651–660. doi:10.1111/j.1365-246X.2010.04869.x CrossRefGoogle Scholar
  26. Lyard F, Lefèvre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  27. Marini JW, Murry CW (1973) Correction of laser range tracking data for atmospheric refraction at elevation above 10 degree. Technical report, NASA-TM-X-70555, Goddard Space Flight Center, GreenbeltGoogle Scholar
  28. Michel V, Georgia R, Long J (2005) Hartebeesthoek co-location survey. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of IERS workshop on site co-location, Matera, Italy, 23–24 Oct 2003. IERS technical note, no. 33Google Scholar
  29. Morel, Willis (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36:358–368CrossRefGoogle Scholar
  30. Nicolas J, Pierron F, Kasser M et al (2000) French Transportable Laser Ranging Station: scientific objectives, technical features, and performance. Appl Opt 39:402–410. doi:10.1364/AO.39.000402 CrossRefGoogle Scholar
  31. Noll C (2005) Co-location and local tie information at the International Laser Ranging Service (ILRS). In: Richter B, Schwegmann W, Dick W (eds) Proceedings of IERS workshop on site co-location, Matera, Italy, 23–24 Oct 2003. IERS technical note, no. 33Google Scholar
  32. Pail R, Bruinsma S, Migliaccio F, Forste C et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819-843. doi:10.1007/s001090-011-0467x
  33. Pavlis E, Müller J (2014) International Laser Ranging Service. In: Wolfgang R, Thaller D (ed) IERS annual report 2012, chapter 3.4.2. International Earth Rotation and Reference Systems Service, Central Bureau. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  34. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  35. Poyard JC (2011) Rattachement du point de reference de la station laser ultra mobile de la campagne 2011 a l’Observatoire Geodesique de Tahitit. Technical report, IGN N28362:2011Google Scholar
  36. Reigber C, Schmidt R, Flechtner F, Knig R, Meyer U, Neumayer K-H, Schwintzer P, Yuan ZS (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10. doi:10.1016/j.jog.2004.07.001 (ISSN: 0264–3707)
  37. Rothacher M, Angermann D, Artz T et al (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J Geod 85:679–705. doi:10.1007/s00190-011-0475-x CrossRefGoogle Scholar
  38. Samain E, Weick J, Vrancken P et al (2008) Time transfer by laser link—the T2L2 experiment on JASON-2 and further experiments. Int J Mod Phys D 17:1043–1054. doi:10.1142/S0218271808012681 CrossRefGoogle Scholar
  39. Soudarin L, Cretaux JF (2006) A model of present-day tectonic plate motions from 12 years of doris measurements. J Geod 80:609-624. doi:10.1007/s00190-006-0090-4
  40. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85:257–272. doi:10.1007/s00190-010-0433-z
  41. Willis P, Fagard H, Ferrage P et al (2010) The international doris service, toward maturity, in doris: scientific applications in geodesy and geodynamics. Adv Space Res 45:1408–1420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • X. Wang
    • 1
  • P. Bonnefond
    • 1
  • P. Exertier
    • 1
  • F. Deleflie
    • 3
  • D. Coulot
    • 4
  • R. Biancale
    • 2
  • J. M. Lemoine
    • 2
  • J. C. Poyard
    • 4
  • C. Courde
    • 1
  • J. P. Barriot
    • 5
  • F. Barlier
    • 1
  1. 1.Geoazur/Observatoire de Côte d’Azur/CNRSValbonneFrance
  2. 2.Observatoire de Midi-Pyrénées/CNESParisFrance
  3. 3.Observatoire de ParisParisFrance
  4. 4.Institut National de l’Information Géographique et ForestièreSaint-Mandé CedexFrance
  5. 5.Observatoire Géodésique de TahitiTahitiFrance

Personalised recommendations