Journal of Geodesy

, Volume 88, Issue 12, pp 1131–1143 | Cite as

Using DORIS measurements for modeling the vertical total electron content of the Earth’s ionosphere

  • Denise DettmeringEmail author
  • Marco Limberger
  • Michael Schmidt
Original Article


The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth’s ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than \(50^\circ \). The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12  % can be achieved. The accuracy directly beneath the DORIS satellites’ ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.


DORIS Ionosphere VTEC 



The authors gratefully acknowledge the following services and institutions for providing the input data for this study: IDS (DORIS data and satellites’ orbits), IGS (GPS data, satellites’ orbits and GIM), UCAR/CDAAC (COSMIC data), AVISO/NASA/CNES (Jason-2 data), and NOAA NGDC (F10.7 index). Moreover, we want to thank Remko Scharroo for providing the VTEC scaling factors.


  1. Alizadeh M, Schuh H, Todorova S, Schmidt M (2011) Global ionosphere maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data. J Geod 85(12):975–987. doi: 10.1007/s00190-011-0449-z CrossRefGoogle Scholar
  2. Auriol A, Tourain C (2010) DORIS system: the new age. Adv Space Res 46(12):1484–1496. doi: 10.1016/j.asr.2010.05.015 CrossRefGoogle Scholar
  3. Bernhardt PA, Siefring CL (2010) Low-latitude ionospheric scintillations and total electron content obtained with the CITRIS instrument on STPSat1 using radio transmissions from DORIS ground beacons. Adv Space Res 45(12):1535–1540. doi: 10.1016/j.asr.2009.12.001 CrossRefGoogle Scholar
  4. Bilitza D, Reinisch B (2008) International Reference Ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609. doi: 10.1016/j.asr.2007.07.048 CrossRefGoogle Scholar
  5. Cerri L, Ferrage P (2014) DORIS satellites model implemented in POE processing, Ed.1, Rev. 6. SALP-NT-BORD-OP-16137-CN, CNES,
  6. Dettmering D, Heinkelmann R, Schmidt M (2011a) Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08. J Geod 85(7):443–451. doi: 10.1007/s00190-011-0473-z CrossRefGoogle Scholar
  7. Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011b) Combination of different space-geodetic observations for regional ionosphere modeling. J Geod 85(12):989–998. doi: 10.1007/s00190-010-0423-1 CrossRefGoogle Scholar
  8. Dettmering D, Schmidt M, Limberger M (2013) Contributions of DORIS to ionosphere modeling. In: Ouwehand L (ed) Proceedings of “20 Years of Progress in Radar Altimetry”, IDS Workshop, Sept. 2012, Venice, Italy, ESA Special Publication SP-710 (CD-Rom). doi: 10.5270/esa.sp-710.altimetry2012
  9. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  10. Fleury R, Foucher F, Lassudrie-Duchesne P (1991) Global TEC measurement capabilities of the DORIS system. Adv Space Res 11(10):51–54. doi: 10.1016/0273-1177(91)90321-A CrossRefGoogle Scholar
  11. Fong CJ, Yen NL, Chu CH, Yang SK, Shiau WT, Huang CY, Chi S, Chen SS, Liou YA, Kuo YH (2009) FORMOSAT-3/COSMIC spacecraft constellation system, mission results, and prospect for follow-on mission. Terr Atmos Ocean Sci 20:1–19. doi: 10.3319/TAO.2008.01.03.01(F3C) CrossRefGoogle Scholar
  12. Foucher F, Ciavaldini JF (1991) Modeling the ionospheric electron content for the correction of altimetric measurements. Pure Appl Geophys 135(3):475–491. doi: 10.1007/BF00879476 CrossRefGoogle Scholar
  13. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi: 10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  14. Hilla S (2010) The extended standard product 3 orbit format (SP3-c).
  15. Hugentobler U, Schaer S, Beutler G, Bock H, Dach R, Jäggi A, Meindl M, Urschl C, Mervart L, Rothacher M, Wild U, Wiget A, Brockmann E, Ineichen D, Weber G, Habrich H, Boucher C (2002) CODE IGS analysis center technical report 2002. Tech. rep., IGS 2001 / 2002 Technical ReportsGoogle Scholar
  16. IDS (2012) Modelling of DORIS instruments, Version 16.2.
  17. Iijilma B, Harris I, Ho C, Lindqwister U, Mannucci A, Pi X, Reyes M, Sparks L, Wilson B (1999) Automated daily process for global ionospheric total electron content maps and satellite ocean ionospheric calibration based on global positioning system. J Atmos Solar Terr Phys 61(16):1205–1218. doi: 10.1016/S1364-6826(99)00067-X CrossRefGoogle Scholar
  18. Koch K, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):259–268. doi: 10.1007/s00190-002-0245-x CrossRefGoogle Scholar
  19. Li F, Parrot M (2007) Study of the TEC data obtained from the DORIS stations in relation to seismic activity. Ann Geophys 50(1):39–50. doi: 10.4401/ag-3086 Google Scholar
  20. Limberger M, Liang W, Schmidt M, Dettmering D, Hugentobler U (2013) Regional representation of F2 Chapman parameters based on electron density profiles. Ann Geophys 31(12):2215–2227. doi: 10.5194/angeo-31-2215-2013 CrossRefGoogle Scholar
  21. Lourme E (2010) RINEX DORIS 3.0. SALP-SP-M-EA-15578-CN, Issue 1.3, CNES.
  22. Mercier F, Cerri L (2010) DORIS phase mesurements and ionospheric effects. Presentation given at the IDS Workshop 2010, Lisbon.
  23. Mercier F, Cerri L, Berthias JP (2010) Jason-2 DORIS phase measurement processing. Adv Space Res 45(12):1441–1454. doi: 10.1016/j.asr.2009.12.002 CrossRefGoogle Scholar
  24. Petit G, Luzum B (2010) IERS conventions (2010), IERS technical note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  25. Scharroo R, Smith W (2010) A global positioning systembased climatology for the total electron content in the ionosphere. J Geophys Res 115(A10318):16. doi: 10.1029/2009JA014719 Google Scholar
  26. Schmidt M, Dettmering D, Mößmer M, Wang Y, Zhang J (2011) Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Sci 46(6). doi: 10.1029/2010RS004609
  27. Schueler T (1998) On the interpolation of SP3 orbit files. Tech. rep., Institute of Geodesy and Navigation, University FAF Munich, IFEN-TropAC-TN-002-01Google Scholar
  28. Schumaker L, Traas C (1991) Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines. Numer Math 60(1):133–144. doi: 10.1007/BF01385718 CrossRefGoogle Scholar
  29. Todorova S, Schuh H, Hobiger T, Hernández-Parajes M (2007) Global models of the ionosphere obtained by integration of GNSS and satellite altimetry data. Österreichische Zeitschrift für Vermessung und Geoinformation (VGI) 2:80–89Google Scholar
  30. Willis P, Soudarin L, Jayles C, Rolland L (2007) DORIS applications for solid Earth and atmospheric sciences. Compt Rendus Geosci 339(16):949–959. doi: 10.1016/j.crte.2007.09.015 CrossRefGoogle Scholar
  31. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The international DORIS service toward maturity. Adv Space Res 45(12):1408–1420. doi: 10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Denise Dettmering
    • 1
    Email author
  • Marco Limberger
    • 1
  • Michael Schmidt
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI) MünchenGermany

Personalised recommendations