Advertisement

Journal of Geodesy

, Volume 88, Issue 11, pp 1029–1046 | Cite as

Assessment of observing time-variable gravity from GOCE GPS and accelerometer observations

  • P. N. A. M. VisserEmail author
  • W. van der Wal
  • E. J. O. Schrama
  • J. van den IJssel
  • J. Bouman
Original Article

Abstract

An assessment has been made of the possibility to estimate time-variable gravity from GPS-derived orbit perturbations and common-mode accelerometer observations of ESA’s GOCE Earth Explorer. A number of 20-day time series of Earth’s global long-wavelength gravity field have been derived for the period November 2009 to November 2012 using different parameter setups and estimation techniques. These techniques include a conventional approach where for each period, one set of gravity coefficients is estimated, either excluding or including empirical accelerations, and the so-called Wiese approach where higher frequency coefficients are estimated for the very long wavelengths. A principal component analysis of especially the time series of gravity field coefficients obtained by the Wiese approach and the conventional approach with empirical accelerations reveals an annual signal. When fitting this annual signal directly through the time series, the sine component (maximum in spring) displays features that are similar to well-known continental hydrological mass changes for the low latitude areas, such as mass variations in the Amazon basin, Africa and Australia for spatial scales down to 1,500 km. The cosine component (maximum in winter), however, displays large signals that can not be attributed to actual mass variations in the Earth system. The estimated gravity field changes from GOCE orbit perturbations are likely affected by missing GPS observations in case of high ionospheric perturbations during periods of increased solar activity, which is minimal in Summer and maximal towards the end of autumn.

Keywords

GOCE Kinematic orbits Long-wavelength time-variable gravity Ionospheric perturbations Wiese approach 

Notes

Acknowledgments

ESA is acknowledged for supporting this study through the Support To Science Element (STSE) program and for providing the GOCE observations. D. Rowlands, F. Lemoine and S. Goossens from NASA/GSFC kindly provided the GEOYDN software and the GOT4.7 ocean tides model. The CHAMP time-variable solutions were provided by Matthias Weigelt through the International Center for Global Gravity Field Models (ICGEM).

References

  1. Baur O (2013) Greenland mass variation from time-variable gravity in the absence of GRACE. Geophys Res Lett 40:4289–4293. doi: 10.1002/grl.50881 CrossRefGoogle Scholar
  2. Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach: theoretical foundations. J Geod 84:605–624. doi: 10.1007/s00190-010-0401-7 CrossRefGoogle Scholar
  3. Bock H, Jäggi A, Meyer U, Visser P, van den IJssel J, Van Helleputte T, Heinze M, Hugentobler U (2011) GPS derived orbits for the GOCE satellite. J Geod 85:807–818. doi: 10.1007/s00190-011-0484-9
  4. Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE Gravitational gradients along the orbit. J Geod 85:791–805. doi: 10.1007/s00190-011-0464-0 CrossRefGoogle Scholar
  5. Broerse T, Visser P, Bouman J, Fuchs M, Vermeersen B, Schmidt M (2011) Modelling and observing the 8.8 Chile and 9.0 Japan earthquakes using GOCE. In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April 2011, Technische Universität München (TM), Munich, Germany (ESA SP-696), ESA Communications, ESTEC, Noordwijk, The Netherlands, pp 1–9. ISBN 978-92-9092-260-5. ISSN 1609-042XGoogle Scholar
  6. Drinkwater M, Haagmans R, Muzzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core explorer. In: 3rd GOCE user workshop, 6–8 November 2006, Frascati, Italy, ESA SP-627Google Scholar
  7. ESA (2004) Swarm–the Earth’s magnetic field and environment explorers. Reports for mission selection, the six candidate Earth Explorer Missions, SP-1279(6), European Space AgencyGoogle Scholar
  8. Flechtner F (2007) AOD1B product description document or product releases 01 to 04. GRACE 327-750 (GR-GFZ-AOD-0001), gravity recovery and climate experiment, Rev 3.0, GeoforschungsZentrum PotsdamGoogle Scholar
  9. Flechtner F, Dahle C, Gruber C, Sasgen I, König R, Michalak G, Neumayer KH (2013) Status GFZ RL05 and RL05a GRACE L2 products. In: GRACE Science Team meeting, Austin, TX, 23–25 October 2013. http://www.csr.utexas.edu/grace/GSTM/2013/proceedings.html. Last Accessed 20 Feb 2014
  10. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85:749–758. doi: 10.1007/s00190-011-0498-3 CrossRefGoogle Scholar
  11. Fuchs M, Bouman J, Broerse T, Visser P, Vermeersen B (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J Geophys Res 118(10):5712–5721. doi: 10.1002/jgrb.50381 CrossRefGoogle Scholar
  12. GOCO (2013) Gravity observation combination (GOCO). http://www.goco.eu. Last Accessed 23 Jan 2013
  13. Gruber T, Abrikosov O, Hugentobler U (2010) GOCE standards. Doc No: GO-TN-HPF-GS-0111, Issue 3 Rev 2Google Scholar
  14. Gunter B, Encarnacao J, Ditmar P, Klees R, van Barneveld P, Visser P (2012) Deriving global time-variable gravity from precise orbits of the iridium next constellation. In: Advances in the astronautical sciences, vol 142, AAS 11-540. ISSN 0065-3438, pp 2087–2097Google Scholar
  15. Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2012a) AIUB-GRACE02S: status of GRACE gravity field recovery using the celestial mechanics approach. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for plane earth. International association of geodesy symposia. Springer, Berlin, vol 136, pp 161–169. doi: 10.1007/978-3-642-20338-1_20
  16. Jäggi A, Prange L, Hugentobler U (2012b) Impact of covariance information of kinematic positions on orbit reconstruction and gravity field recovery. Adv Space Res 47:1472–1479. doi: 10.1016/j.asr.2010.12.009 CrossRefGoogle Scholar
  17. Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Co, WalthamGoogle Scholar
  18. Meyer U, Jäggi A, Beutler G, Bock H (2013) The role of a priori information in gravity field determination. EGU General Assembly, Vienna, Austria, 7–12 April 2013, Abstract EGU2013-9008Google Scholar
  19. Pail R, Fecher T, Jäggi A, Goiginger H (2011) Can GOCE help to improve temporal gravity field estimates? In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April 2011, Technische Universität München (TM), Munich, Germany (ESA SP-696), ESA Communications, ESTEC, Noordwijk, The Netherlands, pp 1–6. ISBN 978-92-9092-260-5. ISSN 1609-042XGoogle Scholar
  20. Pavlis D, Poulouse S, McCarthy J (2006) GEODYN operations manual. Contractor report, SGT Inc., GreenbeltGoogle Scholar
  21. Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry: GOT99.2. Technical report NASA Technical Memorandum 209478, Goddard Space Flight CenterGoogle Scholar
  22. Ray R, Egbert G, Erofeeva S (2011) Tide predictions in shelf and coastal waters: status and prospects. In: Vignudelli S et al. (ed) Coastal altimetry, vol 191. Springer, Berlin, pp 191–216. doi: 10.1007/978-3-642-12796-0_8
  23. Reigber C, Jochmann H, Wünsch J et al. (2005) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit, pp 25–30Google Scholar
  24. Rodell M, Houser P, Gottschalck UJ, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J, Walker J, Lomann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85:381–394CrossRefGoogle Scholar
  25. Rosborough GW (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celest Mech 40:409–421CrossRefGoogle Scholar
  26. Rowlands D, Marshall J, McCarthy J, Moore D, Pavlis D, Rowton S, Luthcke S, Tsaoussi L (1995) GEODYN II system description, vol 1–5. Contractor report, Hughes STX Corporation, GreenbeltGoogle Scholar
  27. Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein W, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86:1083–1095. doi: 10.1007/s00190-012-0566-3 CrossRefGoogle Scholar
  28. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9). doi: 10.1029/2001JB000576
  29. Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305:1503–1505CrossRefGoogle Scholar
  30. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8):467–478. doi: 10.1007/s00190-005-0480-z CrossRefGoogle Scholar
  31. Weigelt M, van Dam T, Jäggi A, Prange L, Tourian M, Keller W, Sneeuw N (2013) Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J Geophys Res 118(7):3485–3859. doi: 10.1002/jgrb.50283
  32. Wiese D, Visser P, Nerem R (2011) Estimating low resolution/high frequency gravity fields to reduce temporal aliasing errors. Adv Space Res 48(6):1094–1107. doi: 10.1016/j.asr.2011.05.027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. N. A. M. Visser
    • 1
    Email author
  • W. van der Wal
    • 1
  • E. J. O. Schrama
    • 1
  • J. van den IJssel
    • 1
  • J. Bouman
    • 2
  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Deutsches Geodätisches ForschungsinstitutMunichGermany

Personalised recommendations