Advertisement

Journal of Geodesy

, Volume 88, Issue 10, pp 989–1006 | Cite as

The most remote point method for the site selection of the future GGOS network

  • Hayo Hase
  • Felipe Pedreros
Review Paper

Abstract

The Global Geodetic Observing System (GGOS) proposes 30–40 geodetic observatories as global infrastructure for the most accurate reference frame to monitor the global change. To reach this goal, several geodetic observatories have upgrade plans to become GGOS stations. Most initiatives are driven by national institutions following national interests. From a global perspective, the site distribution remains incomplete and the initiatives to improve this are up until now insufficient. This article is a contribution to answer the question on where to install new GGOS observatories and where to add observation techniques to existing observatories. It introduces the iterative most remote point (MRP) method for filling in the largest gaps in existing technique-specific networks. A spherical version of the Voronoi-diagram is used to pick the optimal location of the new observatory, but practical concerns determine its realistic location. Once chosen, the process is iterated. A quality and a homogeneity parameter of global networks measure the progress of improving the homogeneity of the global site distribution. This method is applied to the global networks of VGOS, and VGOS co-located with SLR to derive some clues about where additional observatory sites or additional observation techniques at existing observatories will improve the GGOS network configuration. With only six additional VGOS-stations, the homogeneity of the global VGOS-network could be significantly improved by more than \(45\,\%\). From the presented analysis, 25 known or new co-located VGOS and SLR sites are proposed as the future GGOS backbone: Colombo, Easter Island, Fairbanks, Fortaleza, Galapagos, GGAO, Hartebeesthoek, Honiara, Ibadan, Kokee Park, La Plata, Mauritius, McMurdo, Metsahövi, Ny Alesund, Riyadh, San Diego, Santa Maria, Shanghai, Syowa, Tahiti, Tristan de Cunha, Warkworth, Wettzell, and Yarragadee.

Keywords

GGOS Network densification MRP method Delaunay triangulation Voronoi-diagram 

References

  1. Altamimi Z, Collilieux X, Métivier L (2012) Analysis and results of ITRF2008 (IERS Technical Note 37) Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. doi: 10.1007/s00190-011-0444-4. ISBN: 978-3-86482-046-5 (print version)
  2. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–635. doi: 10.1016/S0273-1177(99)00160-X CrossRefGoogle Scholar
  3. Beutler G, Rummel R (2012) Scientific rationale and development of the global geodetic observing system. In: Kenyon SC, Pacino MC, Marti UJ (eds) Scientific assembly of the International Association of Geodesy (IAG), geodesy for planet earth, Buenos Aires, Argentina, Proceedings of the 2009 IAG Symposium, Aug. 31–Sep. 4, 2009, IAG Symp, vol 136, pp 987–993. Springer, Berlin. doi: 10.1007/978-3-642-20338-1_123
  4. Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C.-Y, Lemoine F.G, Moore AW, Neilan RE, Plag H.-P, Rothacher M, Shum CK, Sideris MG, Schne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford. doi: 10.1002/9781444323276.ch9
  5. Delaunay B (1934) Sur la sphere vide (in French) Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800Google Scholar
  6. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi: 10.1029/94GL02118 CrossRefGoogle Scholar
  7. Dermanis A, Mueller II (1978) Earth rotation and network geometry optimization for very long baseline interferometry. Bull Geod 52(2):131–158. doi: 10.1007/BF02521695
  8. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Grafarend E (1974) Optimization of geodetic networks. Boll Geod Sci Aff 33:351–406Google Scholar
  10. Grafarend E, Sanso F (eds) (1986) Optimization and design of geodetic networks. Springer, BerlinGoogle Scholar
  11. Hase H (1999) Theorie und Praxis Globaler Bezugssysteme (in German) Mitteilungen des BKG. Band 13. ISSN: 1436-3445. ISBN: 3-88648-097-6Google Scholar
  12. Hase H (2000) New method for the selection of additional sites for the homogenisation of an inhomogeneous cospherical point distribution. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS). IAG Section II Symposium Munich, October 5–9, 1998. Springer, Berlin, pp 180–183. doi: 10.1007/978-3-642-59745-9_35
  13. Hase H, Böer A, Riepl S, Schlüter W (2000) Transportable integrated geodetic observatory (TIGO) International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings, pp 383–387Google Scholar
  14. Hase H (2011) Geodesy, Networks and Reference Systems. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, vol. 1. Springer, Berlin, pp 323–331. doi: 10.1007/978-90-481-8702-7_84
  15. Hase H, Behrend D, Ma C, Petrachenko B, Schuh H, Whitney A (2012) The emerging VGOS network of the IVS. In: Behrend D, Baver KD (eds) IVS 2012 General meeting proceedings launching the next-generation IVS network NASA/CP-2012-217504, pp 8–12. http://ivscc.gsfc.nasa.gov/publications/gm2012/hase
  16. McGarry J, Wetzel S, Cheek J, Zagwodzki T, Clarke C, Donovan H, Horvath J, Mann A, Patterson D, Ricklefs R (2011) SLR automation for the new space geodesy multi-technique sites. In: Proceedings of ILRS workshop 2011, Bad Kötzting. http://cddis.gsfc.nasa.gov/lw17/docs/papers/session16/04-McGarry_NGSLR_Automation_Kotzting2011_paper_FINAL
  17. Minster JB, Altamimi Z, Blewitt G, Carter WE, Cazenave A, Dragert H, Herring TA, Larson KM, Ries JC, Sandwell DT, Wahr JM, Davis JL, Feary DA, Shanley LA, Edkin E, Gibbs CR, Rogers ND (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington, D.C. doi: 10.1038/NGEO938. ISBN: 978-0-309-15811-4
  18. Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations concepts and applications of Voronoi diagrams, 2nd edn. Wiley, New York. doi: 10.1002/9780470317013.ch6
  19. Pavlis EC, Ries JC, MacMillan DS, Kuzmicz-Cieslak M, Ma C, Rowlands DD (2008) The future global geodetic networks to support GGOS EOS. Transactions AGU, vol 89, (53 Fall Meeting Supplemental)Google Scholar
  20. Petrachenko WT, Niell AE, Corey BE, Behrend D, Schuh H, Wresnik J (2012) VLBI2010: next generation VLBI system for geodesy and astrometry. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth. IAG Symp, vol 136. Springer, Berlin, pp 999–1006. ISBN: 978-3-642-20337-4Google Scholar
  21. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  22. Plag H-P, Pearlman M (2009) (eds) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. doi: 10.1007/978-3-642-02687-4
  23. Rummel R, Drewes H, Beutler G (2002) Integrated global geodetic observing system (IGGOS): a candidate IAG project. In: Adam J, Schwarz KP (eds) Scientific assembly of the international association of geodesy, Budapest, Hungary, Sept. 2–7, 2001, Vistas for geodesy in the new millenium. IAG Symp, vol 125. Springer, Berlin, pp 609–614. doi: 10.1007/978-3-662-04709-5_102
  24. Schneider M (1990) Konzept und Rolle von Fundamentalstationen (in German) In: Schneider M (eds) Satellitengeodäsie, Ergebnisse aus dem gleichnamigen Sonderforschungsbereich der Technischen Universität München, VCH Weinheim, pp 35–38. ISBN: 3-527-27712-9Google Scholar
  25. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:6880. doi: 10.1016/j.jog.2012.07.007 CrossRefGoogle Scholar
  26. Voronoi G (1907) Nouvelles applications des parametres continus la theorie des formes quadratiques (in French). J Reine Angew Math 133:97–178. doi: 10.1515/crll.1908.133.97
  27. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):525–539. doi: 10.1007/s00190-006-0056-6
  28. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The international DORIS service (IDS): toward maturity. In: Willis P (ed) DORIS: scientific applications in geodesy and geodynamics, vol 45, No. 12, pp 1408–1420. doi: 10.1016/j.asr.2009.11.018

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Bundesamt für Kartographie und GeodäsieBad KötztingGermany
  2. 2.Wisconsin IceCube Particle Astrophysics CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations