Advertisement

Journal of Geodesy

, Volume 88, Issue 9, pp 821–838 | Cite as

Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data

  • Joachim SchwabeEmail author
  • Mirko Scheinert
Original Article

Abstract

We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove–compute–restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.

Keywords

Regional geoid Heterogeneous gravity data Least-squares collocation Marine gravity Radar altimetry  Mean dynamic topography Geostrophic velocities 

Notes

Acknowledgments

We would like to thank all colleagues who supported the work within the IAG Commission 2.4f ”Gravity and Geoid in Antarctica” (AntGG), especially G. Leichenkov (VNIOOkeangeologia, St. Petersburg, Russia), W. Jokat (AWI Bremerhaven, Germany) and F. Ferraccioli (BAS, Cambridge, UK). Ch. Tscherning and R. Forsberg (Denmark) are greatly acknowledged for providing the GRAVSOFT package.

Figures were generated using the Generic Mapping Tools (Wessel and Smith 1998). Attribution for coastline data: SCAR Antarctic Digital Database

The MDT CNES-CLS09 was produced by CLS Space Oceanography Division and distributed by Aviso, with support from CNES (http://www.aviso.oceanobs.com/). Attribution for SIO/NOAA gravity anomalies and all derived material herein: “Data: SIO, NOAA, NGA” The work is partly supported by the German Research Foundation (DFG) within the priority program SPP 1257 “Mass transport and mass distribution in the system Earth,” project SCHE 1426/6, as part of the joint project GEOTOP. All colleagues from Munich and Bremerhaven are thanked for the fruitful cooperation within this project. Finally, the authors greatly acknowledge the valuable comments of Editor-in-Chief R. Klees, handling editor P. Ditmar and three anonymous reviewers who helped to improve the paper considerably.

Supplementary material

190_2014_724_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (pdf 3330 KB)

References

  1. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190(2):922–930. doi: 10.1111/j.1365-246X.2012.05531.x
  2. Aleshkova N, Golynsky A, Kurinin R, Mandrikov V (2000) Gravity mapping in the Southern Weddell Sea region. (explanatory note for free-air and Bouguer anaomalies maps). Polarforschung 67(3):163–177. http://hdl.handle.net/10013/epic.29783.d001
  3. Andersen O (2010) The DTU10 gravity field and mean sea surface. In: Presented at the second international symposium of the gravity field of the Earth (IGFS2), 20–22 Sep 2010, Fairbanks, AlaskaGoogle Scholar
  4. Andersen O, Forsberg R, Knudsen P, Laxon S, McAdoo D (1998) Comparison of altimetric and ship borne marine gravity over ice-free and ice-covered polar seas. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the move, International Association of Geodesy Symposia, vol 119. Springer, Heidelberg, pp 492–497. doi: 10.1007/978-3-642-72245-5_83 Google Scholar
  5. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophy Res Oceans 114(C11). doi: 10.1029/2008JC005179
  6. Andersen OB, Knudsen P, Berry PA (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geodesy 84(3):191–199. doi: 10.1007/s00190-009-0355-9 CrossRefGoogle Scholar
  7. Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Oceanic Technol 25(10). doi: 10.1175/2008JTECHO568.1
  8. Blankenship DD, Kempf S, Young D (2011) IceBridge BGM-3 gravimeter L2 geolocated free air anomalies. Data Oct–Nov 2009 and Oct–Nov 2010, release version 01.5. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. http://nsidc.org/data/igbgm2.html Accessed 02 July 2013
  9. Brozena J, LaBrecque J, Peters M, Bell R, Raymond C (1990) Airborne gravity measurement over sea-ice: the Western Weddell Sea. Geophys Res Lett 17(11):1941–1944. doi: 10.1029/GL017i011p01941 CrossRefGoogle Scholar
  10. Bruinsma S, Marty J, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. Presented at the ESA Living Planet Symposium, 27 Jun-2 Jul 2010, Bergen, NorwayGoogle Scholar
  11. Fahrbach E, Beckmann A (2001) Weddell Sea Circulation. In: Steele JH (ed) Encyclopedia of ocean sciences, 2nd edn. Academic Press, Oxford, pp 318–325. doi: 10.1016/B978-012374473-9.00371-4. CrossRefGoogle Scholar
  12. Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A (2011) Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: the Weddell gyre as a heat buffer. Deep Sea Res Part II Top Stud Oceanogr 58(25–26):2509–2523. doi: 10.1016/j.dsr2.2011.06.007 CrossRefGoogle Scholar
  13. Ferraccioli F, Jones P, Vaughan A, Leat P (2006) New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophys Res Lett 33(L05):310. doi: 10.1029/2005GL024636 Google Scholar
  14. Forsberg R, Tscherning C (2008) An overview manual for the GRAVSOFT geodetic gravity field modelling programs. 2nd edn. Contract report for JUPEM. http://cct.gfy.ku.dk/publ_cct/cct1792 Accessed 02 July 2013
  15. Förste C, Bruinsma S, Flechtner F, Marty JC, Lemoine JM, Dahle C, Abrikosov O, Neumayer H, Biancale R, Barthelmes F, Balmino G (2012) A preliminary update of the Direct approach GOCE processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting, 3–7 Dec 2012, San Francisco, United States, Abstract no, pp G31B–0923Google Scholar
  16. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7(1):375–393. doi: 10.5194/tc-7-375-2013 CrossRefGoogle Scholar
  17. Haxby WF, Karner GD, LaBrecque JL, Weissel JK (1983) Digital images of combined oceanic and continental data sets and their use in tectonic studies. Eos Trans Am Geophys Union 64(52):995–1004. doi: 10.1029/EO064i052p00995 CrossRefGoogle Scholar
  18. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228. doi: 10.1038/nature11064 CrossRefGoogle Scholar
  19. Herrod LDB (1987) A geophysical recognisance of Ronne Ice Shelf, Antarctica. PhD thesis 1987 University of CambridgeGoogle Scholar
  20. Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, WienGoogle Scholar
  21. Janjić T, Schröter J, Albertella A, Bosch W, Rummel R, Savcenko R, Schwabe J, Scheinert M (2012) Assimilation of geodetic dynamic ocean topography using ensemble based Kalman filter. J Geodyn 59–60:92–98. doi: 10.1016/j.jog.2011.07.001 CrossRefGoogle Scholar
  22. Jones PC, Johnson AC, von Frese RRB, Corr H (2002) Detecting rift basins in the Evans Ice Stream region of West Antarctica using airborne gravity data. Tectonophys 347:25–41CrossRefGoogle Scholar
  23. Jordan T, Ferraccioli F, Jones P, Smellie J, Ghidella M, Corr H (2009) Airborne gravity reveals interior of Antarctic volcano. Phys Earth Plan Int 175(3–4):127–136CrossRefGoogle Scholar
  24. Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the Prime Meridian. Deep Sea Res Part II Top Stud Oceanogr 52(3–4):513–528. doi: 10.1016/j.dsr2.2004.12.015 CrossRefGoogle Scholar
  25. Korth W, Dietrich R, Reitmayr G, Damm V (1998) Regional geoid improvement based on surface gravity data. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the move. Gravity, geoid, geodynamics, and Antarctica, Springer, Berlin, IAG Symposia, vol 119, pp 523–528Google Scholar
  26. LaBrecque J, Ghidella M (1997) Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the western Weddell Basin. J Geophys Res 102(B4):7929–7945. doi: 10.1029/96JB01264
  27. Laxon S (1994) Sea ice altimeter processing scheme at the EODC. Int J Remote Sens 15(4):915–924. doi: 10.1080/01431169408954124 CrossRefGoogle Scholar
  28. Lythe M, Vaughan D, the BEDMAP Consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106(B6):11335–11351. doi: 10.1029/2000JB900449
  29. Maslanyi M (1991) Geophysical investigation of George VI Sound, Antarctic Peninsula. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 527–530Google Scholar
  30. Mayer-Gürr T (2007) ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. Presented at the GSTM+SPP, 15–17 Oct 2007, Potsdam, GermanyGoogle Scholar
  31. McAdoo DC, Laxon SW (1996) Marine gravity from Geosat and ERS-1 altimetry in the Weddell Sea. Geol Soc Lond Spec Publ 108(1):155–164. doi: 10.1144/GSL.SP.1996.108.01.11 CrossRefGoogle Scholar
  32. McAdoo DC, Farrell SL, Laxon SW, Zwally HJ, Yi D, Ridout AL (2008) Arctic Ocean gravity field derived from ICESat and ERS-2 altimetry: tectonic implications. J Geophys Res Solid Earth 113(B5). doi: 10.1029/2007JB005217
  33. McGibbon KJ, Smith AM (1991) New Geophysical results and preliminary interpretation of crustal structure between the Antarctic Peninsula and Ellsworth Land. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge, pp 475–479Google Scholar
  34. Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, KarlsruheGoogle Scholar
  35. Müller J, Riedel S, Scheinert M, Horwath M, Dietrich R, Steinhage D, Anschütz H, Jokat W (2007) Regional geoid and gravity field from a combination of airborne and satellite data in Dronning Maud Land, East Antarctica. In: Cooper A, Raymond C, the 10th ISAES Editorial Team (eds) Antarctica: A Keystone in a Changing World: Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences, USGS Open-File Report 2007–1047, Extended Abstract 022, http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea022, 26 Aug-1 Sep 2007, Santa Barbara, USA
  36. Naveira Garabato AC, McDonagh EL, Stevens DP, Heywood KJ, Sanders RJ (2002) On the export of Antarctic bottom water from the Weddell Sea. Deep Sea Res Part II Top Stud Oceanogr 49(21):4715–4742. doi: 10.1016/S0967-0645(02)00156-X CrossRefGoogle Scholar
  37. Núñez-Riboni I, Fahrbach E (2009) Seasonal variability of the Antarctic Coastal Current and its driving mechanisms in the Weddell Sea. Deep Sea Res Part I Oceanogr Res Papers 56(11):1927–1941. doi: 10.1016/j.dsr.2009.06.005 CrossRefGoogle Scholar
  38. Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Papers 42(5):641–673. doi: 10.1016/0967-0637(95)00021-W
  39. Pavlis N, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117(B4):404–406. doi: 10.1029/2011JB008916 Google Scholar
  40. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to the development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth 118(5):2633–2633. doi: 10.1002/jgrb.50167 CrossRefGoogle Scholar
  41. Renner RGB, Sturgeon LJS, Garrett SW (1985) Reconnaissance gravity and aeromagnetic surveys of the Antarctic Peninsula. BAS Scientific Reports 134Google Scholar
  42. Riedel S (2009) Airborne-based geophysical investigation in Dronning Maud Land, Antarctica. PhD thesis, http://nbn-resolving.de/urn:nbn:de:gbv:46-diss000113400
  43. Riedel S, Jokat W (2007) A compilation of new airborne magnetic and gravity data across Dronning Maud Land, Antarctica. In: Cooper A, Raymond C, the 10th ISAES Editorial Team (eds) Antarctica: A Keystone in a Changing World: Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences, USGS Open-File Report 2007–1047, Extended Abstract 022, http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea149, 26 Aug-1 Sep 2007, Santa Barbara, USA
  44. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res Oceans 116(C7). doi: 10.1029/2010JC006505
  45. Sandwell D, Garcia E, Soofi K, Wessel P, Chandler M, Smith W (2013) Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899. doi: 10.1190/tle32080892.1 CrossRefGoogle Scholar
  46. Sandwell DT (1992) Antarctic marine gravity field from high-density satellite altimetry. Geophys J Int 109(2):437–448. doi: 10.1111/j.1365-246X.1992.tb00106.x CrossRefGoogle Scholar
  47. Sandwell DT, McAdoo DC (1990) High-accuracy, high-resolution gravity profiles from 2 years of the geosat exact repeat mission. J Geophys Res Oceans 95(C3):3049–3060. doi: 10.1029/JC095iC03p03049 CrossRefGoogle Scholar
  48. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophy Res Solid Earth 102(B5):10039–10054. doi: 10.1029/96JB03223 CrossRefGoogle Scholar
  49. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res Solid Earth 114(B1). doi: 10.1029/2008JB006008
  50. Scheinert M, Müller J, Dietrich R, Damaske D, Damm V (2008) Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geodesy 82(7):403–414. doi: 10.1007/s00190-007-0189-2 CrossRefGoogle Scholar
  51. Schöne T (1997) Ein Beitrag zum Schwerefeld im Bereich des Weddellmeeres, Antarktis: Nutzung von Altimetermessungen des GEOSAT und ERS-1 (The gravity field in the Weddell Sea, Antarctica, by radar altimetry from GEOSAT and ERS-1). Tech. Rep. 220, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. http://hdl.handle.net/10013/epic.10221.d001
  52. Schöne T, Schenke HW (1998) Gravity determination in ice covered regions by altimetry. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the Move, International Association of Geodesy Symposia, vol 119, Springer, Berlin Heidelberg, pp 156–162. doi: 10.1007/978-3-642-72245-5_21
  53. Schwabe J, Scheinert M, Dietrich R, Ferraccioli F, Jordan T (2012) Regional geoid improvement over the Antarctic Peninsula utilizing airborne gravity data. In: Sideris M (ed) Geodesy for Planet Earth, IAG Symposia, vol 136, Springer, Berlin, pp 457–464, doi: 10.1007/978-3-642-20338-1_55, 31 Aug-4 Sep 2009, Buenos Aires, Argentina
  54. Studinger M (1998) Interpretation und Analyse von Potentialfelddaten im Weddellmeer, Antarktis: der Zerfall des Superkontinents Gondwana (Compilation and analysis of potential field data from the Weddell Sea, Antarctica: Implications for the break-up of Gondwana). Technical Report 276, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, http://hdl.handle.net/10013/epic.10279.d001
  55. Studinger M, Miller H (1999) Crustal structure of the Filchner–Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of Gondwana. J Geophys Res Solid Earth 104(B9):20,379–20,394. doi: 10.1029/1999JB900117
  56. Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model. Ocean Model 27(3–4):114–129. doi: 10.1016/j.ocemod.2008.10.009 CrossRefGoogle Scholar
  57. Tscherning C, Rapp R (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Technical Report 208, Ohio State University, Columbus, USA, http://cct.gfy.ku.dk/publ_cct/cct44. Accessed 2 July 2013
  58. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79(47):579. doi: 10.1029/98EO00426 CrossRefGoogle Scholar
  59. Zwally HJ, Yi D, Kwok R, Zhao Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J Geophys Res Oceans 113(C2). doi: 10.1029/2007JC004284

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany

Personalised recommendations