Advertisement

Journal of Geodesy

, Volume 88, Issue 7, pp 691–703 | Cite as

Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model

  • Biyan Chen
  • Zhizhao LiuEmail author
Original Article

Abstract

Water vapor tomography has been developed as a powerful tool to model spatial and temporal distribution of atmospheric water vapor. Global navigation satellite systems (GNSS) water vapor tomography refers to the 3D structural construction of tropospheric water vapor using a large number of GNSS signals that penetrate the tomographic modeling area from different positions. The modeling area is usually discretized into a number of voxels. A major issue involved is that some voxels are not crossed by any GNSS signal rays, resulting in an undetermined solution to the tomographic system. To alleviate this problem, the number of voxels crossed by GNSS signal rays should be as large as possible. An important way to achieve this is to optimize the geographic distribution of tomographic voxels. We propose an approach to optimize voxel distribution in both vertical and horizontal domains. In the vertical domain, water vapor profiles derived from radiosonde data are exploited to identify the maximum height of tomography and the optimal vertical resolution. In the horizontal domain, the optimal horizontal distribution of voxels is obtained by searching the maximum number of ray-crossing voxels in both latitude and longitude directions. The water vapor tomography optimization procedures are implemented using GPS water vapor data from the Hong Kong Satellite Positioning Reference Station Network. The tomographic water vapor fields solved from the optimized tomographic voxels are evaluated using radiosonde data and a numerical weather prediction non-hydrostatic model (NHM) obtained for the Hong Kong station. The comparisons of tomographic integrated water vapor (IWV) with the radiosonde and NHM IWV show that RMS errors of their differences are 1.41 and 3.09 mm, respectively. Moreover, the tomographic water vapor density results are compared with those of radiosonde and NHM. The RMS error of the density differences between tomography and radiosonde data is 1.05 \(\mathrm{g/m}^{3}\). For the comparison between tomography and NHM, an overall RMS error of \(1.43\,\mathrm{g/m^{3}}\) is achieved.

Keywords

Water vapor tomography Voxel optimization GNSS 

Notes

Acknowledgments

This work is supported by the Hong Kong Research Grants Council (RGC) General Research Fund (GRF) project PolyU 5217/11E. The support from the National Natural Science Foundation of China (No. 41274039) is gratefully acknowledged. Zhizhao Liu also thanks the Program of Introducing Talents of Discipline to Universities (Wuhan University, GNSS Research Center), China. Mr. Sai Tick Chan, Mr. Wang Chun Woo and Mr. P. W. Chan from the Hong Kong Observatory, Government of Hong Kong Special Administrative Region (HKSAR), are acknowledged for providing the NHM data. The Lands Department of HKSAR is acknowledged for providing the GPS data from the Hong Kong Satellite Positioning Reference Station Network (SatRef). The International GNSS Service (IGS) is acknowledged for providing precise GPS satellite orbit data.

References

  1. Adeyemi B, Joerg S (2012) Analysis of water vapor over nigeria using radiosonde and satellite data. J Appl Meteorol Climatol 51:1855–1866. doi: 10.1175/JAMC-D-11-0119.1 CrossRefGoogle Scholar
  2. Alber C, Ware R, Rocken C, Braun J (2000) Obtaining single path phase delays from GPS double differences. Geophys Res Lett 27:2661–2664CrossRefGoogle Scholar
  3. Bender M, Dick G, Ge M et al (2011) Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv Space Res 47:1704–1720. doi: 10.1016/j.asr.2010.05.034 CrossRefGoogle Scholar
  4. Bender M, Raabe A (2007) Preconditions to ground based GPS water vapour tomography. Ann Geophys 25:1727–1734Google Scholar
  5. Bevis M, Businger S, Herring TA et al (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res Atmos 1984–2012(97):15787–15801CrossRefGoogle Scholar
  6. Bi Y, Mao J, Li C (2006) Preliminary results of 4D water vapor tomography in the troposphere using GPS. Adv Atmos Sci 23:551–560. doi: 10.1007/s00376-006-0551-y CrossRefGoogle Scholar
  7. Braun J, Rocken C, Ware R (2001) Validation of line-of-sight water vapor measurements with GPS. Radio Sci 36:459–472CrossRefGoogle Scholar
  8. Champollion C, Masson F, Bouin M-N et al (2005) GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Res 74:253–274. doi: 10.1016/j.atmosres.2004.04.003 CrossRefGoogle Scholar
  9. Chan ST, Chan TF, Wong WK (2010) An intercomparison of WRF-ARW and JMA-NHM performance in prediction of tropical cyclones over the South China Sea in (2008). In: 29th conference hurricanes and tropical meteorology. Am Meteorol SocGoogle Scholar
  10. Chen Y, Liu Y, Wang X, Li P (2007) GPS real-time estimation of precipitable water vapor-Hong Kong experiences. Acta Geod Cartogr Sin 36:9–12Google Scholar
  11. Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838CrossRefGoogle Scholar
  12. Emardson TR, Johansson J, Elgered G (2000) The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans Geosci Remote Sens 38:324–329CrossRefGoogle Scholar
  13. Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Ann Geophys 18:223–234CrossRefGoogle Scholar
  14. Gendt G, Dick G, Reigber C et al (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82:361–370CrossRefGoogle Scholar
  15. Griffiths J, Ray JR (2009) On the precision and accuracy of IGS orbits. J Geod 83:277–287. doi: 10.1007/s00190-008-0237-6 CrossRefGoogle Scholar
  16. Haan SD, Holleman I, Holtslag AAM (2009) Real-time water vapor maps from a GPS surface network: construction, validation, and applications. J Appl Meteorol Climatol 48:1302–1316. doi: 10.1175/2008JAMC2024.1 CrossRefGoogle Scholar
  17. Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52:935–939Google Scholar
  18. Lee S-W, Kouba J, Schutz B et al (2013) Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geod. doi: 10.1007/s00190-013-0655-y Google Scholar
  19. Liu Z, Wong MS, Nichol J, Chan PW (2013) A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong. Int J Climatol 33:109–120. doi: 10.1002/joc.3412 Google Scholar
  20. Lutz S (2009) High-resolution GPS tomography in view of hydrological hazard assessment. Schweizerische Geodätische KommissionGoogle Scholar
  21. Mohanakumar K (2008) Structure and composition of the lower and middle atmosphere. In: Stratosphere troposphere interactions: an introduction. Springer, New YorkGoogle Scholar
  22. Moore AW, Neilan RE (2005) The International GPS Service tracking network: Enabling diverse studies and projects through international cooperation. J Geodyn 40:461–469. doi: 10.1016/j.jog.2005.10.009 CrossRefGoogle Scholar
  23. Niell AE, Coster AJ, Solheim FS et al (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18:830–850CrossRefGoogle Scholar
  24. Nilsson T, Gradinarsky L (2006) Water vapor tomography using GPS phase observations: simulation results. IEEE Trans Geosci Remote Sens 44:2927–2941. doi: 10.1109/TGRS.2006.877755 CrossRefGoogle Scholar
  25. Notarpietro R, Cucca M, Gabella M et al (2011) Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks. Adv Space Res 47:898–912. doi: 10.1016/j.asr.2010.12.025 CrossRefGoogle Scholar
  26. Perler D (2012) Water vapor tomography using global navigation satellite systems. Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20012, 2011Google Scholar
  27. Perler D, Geiger A, Hurter F (2011) 4D GPS water vapor tomography: new parameterized approaches. J Geod 85:539–550. doi: 10.1007/s00190-011-0454-2 CrossRefGoogle Scholar
  28. Raja MKRV, Gutman SI, Yoe JG et al (2008) The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J Atmos Ocean Technol 25:416–428. doi: 10.1175/2007JTECHA889.1 CrossRefGoogle Scholar
  29. Rocken C, Ware R, Van Hove T et al (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20:2631–2634CrossRefGoogle Scholar
  30. Rohm W (2013) The ground GNSS tomography—unconstrained approach. Adv Space Res 51:501–513. doi: 10.1016/j.asr.2012.09.021 CrossRefGoogle Scholar
  31. Rohm W (2012) The precision of humidity in GNSS tomography. Atmos Res 107:69–75. doi: 10.1016/j.atmosres.2011.12.008 CrossRefGoogle Scholar
  32. Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomography model in a mountainous area. Adv Space Res 47:1721–1730. doi: 10.1016/j.asr.2010.04.017 CrossRefGoogle Scholar
  33. Rohm W, Bosy J (2009) Local tomography troposphere model over mountains area. Atmospheric Res 93:777–783. doi: 10.1016/j.atmosres.2009.03.013 CrossRefGoogle Scholar
  34. Skone S, Hoyle V (2005) Troposphere modeling in a regional GPS network. J Glob Position Syst 4:230–239CrossRefGoogle Scholar
  35. Smith TL, Benjamin SG, Gutman SI, Sahm S (2007) Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle. Mon Weather Rev 135:2914–2930. doi: 10.1175/MWR3436.1 CrossRefGoogle Scholar
  36. Troller M, Geiger A, Brockmann E et al (2006) Tomographic determination of the spatial distribution of water vapor using GPS observations. Adv Space Res 37:2211–2217. doi: 10.1016/j.asr.2005.07.002 CrossRefGoogle Scholar
  37. Ware R, Alber C, Rocken C, Solheim F (1997) Sensing integrated water vapor along GPS ray paths.pdf. Geophys Res Lett 24:417–420CrossRefGoogle Scholar
  38. Wen D, Yuan Y, Ou J et al (2008) A hybrid reconstruction algorithm for 3-D ionospheric tomography. IEEE Trans Geosci Remote Sens 46:1733–1739. doi: 10.1109/TGRS.2008.916466 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Land Surveying and Geo-InformaticsHong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations