Journal of Geodesy

, Volume 88, Issue 7, pp 659–673 | Cite as

Precise station positions from VLBI observations to satellites: a simulation study

  • Lucia Plank
  • Johannes Böhm
  • Harald Schuh
Original Article


Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.


Very long baseline interferometry Terrestrial reference frame VLBI-satellite tracking Space tie 



The presented research was done within project D-VLBI (SCHU 1103/4-1) as part of the DFG Research Unit Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space funded by the German Research Foundation (FOR 1503). We kindly acknowledge four anonymous reviewers for their useful and detailed comments.


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  2. Bar-Sever Y, Haines B, Bertiger W, Desai S, Wu S (2009) Geodetic Reference Antenna in Space (GRASP)—a mission to enhance space-based geodesy. In: COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua, 2009Google Scholar
  3. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI Software VieVS. In: Proceedings of the 2009 IAG symposium, Buenos Aires, Argentina, vol 136. International Association of Geodesy SymposiaGoogle Scholar
  4. Brieß K, Konemann G, Wickert J (2009) MicroGEM—microsatellites for GNSS Earth Monitoring, Abschlussbericht Phase 0/A. Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ and Technische Universität BerlinGoogle Scholar
  5. Counselman C, Gourevitch SA (1981) Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system. IEEE Trans Geosci Remote Sens GE 19(4):244–252Google Scholar
  6. Dickey JM (2010) How and why do VLBI on GPS. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2010 general meeting proceedings, pp 65–69. NASA/CP 2010–215864Google Scholar
  7. Duev DA, Molera Calvés G, Pogrebenko SV, Gurvits LI, Cim G, Bocanegra Bahamon T (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:A43. doi: 10.1051/0004-6361/201218,885
  8. Hanada H, Iwata T, Namiki N, Kawano N, Asari K, Ishikawa T, Kikuchi F, Liu Q, Matsumoto K, Noda H, Tsuruta S, Goossens S, Iwadate K, Kameya O, Tamura Y, Hong X, Ping J, Aili Y, Ellingsen S, Schlüter W (2008) VLBI for better gravimetry in SELENE. Adv Space Res 42:341–346CrossRefGoogle Scholar
  9. Hase H (1999) Phase centre determinations at GPS-satellites with VLBI. In: Schlüter W, Hase H (eds) Proceedings of the 13th working meeting of the European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Wettzell, pp 273–277, held at ViechtachGoogle Scholar
  10. Hase H, Behrend D, Ma C, Petrachenko B, Schuh H, Whitney A (2013) The emerging VGOS network of the IVS. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2012 general meeting proceedings, pp 8–12. NASA/CP-2012-217504Google Scholar
  11. Huang Y, Hu X, Huang C, Jiang D, Zheng W, Zhang X (2006) Orbit determination of satellite “Tance 1” with VLBI data. Chin Astron Astrophys 30:318–329CrossRefGoogle Scholar
  12. Huang Y, Hu X, Zhang X, Jiang D, Guo R, Wang H, Shi S (2011) Improvement of orbit determination for geostationary satellites with VLBI tracking. Chin Sci Bull 56:2765–2772CrossRefGoogle Scholar
  13. Klioner SA (1991) General relativistic model of VLBI observables. In: Proceedings of the AGU Chapman conference on geodetic VLBI: monitoring global change, pp 188–202. NOAA Technical Report NOS 137 NGS 49Google Scholar
  14. Kwak Y, Gotoh T, Amagai J, Takiguchi H, Sekido M, Ichikawa R, Sasao T, Cho J, Kim T (2010) The first experiment with VLBI-GPS hybrid system. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2010 general meeting proceedings, pp 330–334. NASA/CP 2010–215864Google Scholar
  15. Lanyi G, Bagri DS, Border JS (2007) Angular position determination of spacecraft by radio interferometry. Proc IEEE 95:11CrossRefGoogle Scholar
  16. Lebreton JP, Witasse O, Sollazzo C, Blancquaert T, Couzin P, Schipper AM, Jones JB, Matson DL, Gurvits LI, Atkinson DH, Kazeminejad B, Pérez-Ayúcar M (2005) An overview of the descent and landing of the Huygens probe onTitan. Nature 438(8):758–764. doi: 10.1038/nature04347 CrossRefGoogle Scholar
  17. MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651CrossRefGoogle Scholar
  18. Moya Espinosa M, Haas R (2007) SATTRACK a satellite tracking module for the VLBI field system. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, Vienna, vol 79, pp 53–58. Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380Google Scholar
  19. Moyer TD (2003) Formulation for observed and computed values of deep space network data types for navigation. In: Yuen JH (ed) JPL deep space communications and navigation series. Wiley, New York, ISBN: 0-471-44535-5Google Scholar
  20. Niell AE (2007) Simulation networks-1. IVS Memorandum 2007-001v01.
  21. Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Vienna, vol 79, pp 175–180. Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380Google Scholar
  22. Pany A, Böhm J, MacMillan DS, Schuh H, Nilsson T, Wresnik J (2010) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85(1):39–50 Google Scholar
  23. Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Progress report of the IVS VLBI2010 committee: design aspects of the VLBI2010 system. NASA/TM-2009-214180.
  24. Preston RA, Ergas R, Hinteregger HF, Knight CA, Robertson DS, Shapiro II, Whitney AR, Rogers AEE, Clark TA (1972) Interferometric observations of an artificial satellite. Science 178–4059:407–409CrossRefGoogle Scholar
  25. Rosenbaum B (1972) The VLBI time delay function for synchronous orbits. NASA/TM-X-66122 GSFCGoogle Scholar
  26. Sarti P, Abbondanza C, Petrov L, Negusini M (2011) Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J Geod 85:1–8. doi: 10.1007/s00190-010-0410-6 CrossRefGoogle Scholar
  27. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80CrossRefGoogle Scholar
  28. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123CrossRefGoogle Scholar
  29. Sun J (2013) VLBI scheduling strategies with respect to VLBI2010. Dissertation, Geowissenschaftliche Mitteilungen 92, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380Google Scholar
  30. Sun J, Böhm J, Nilsson T, Krásná H, Böhm S, Schuh H (2014) New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J Geod. doi: 10.1007/s00190-014-0697-9 (in press)
  31. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85:257–272CrossRefGoogle Scholar
  32. Tornatore V, Haas R (2009) Considerations on the observation of GNSS-signals with the VLBI2010 system. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for geodesy and astrometry working meeting. Université Bordeaux 1-CNRS Observatoire Aquitain des Sciences de l’Univers Laboratoire d’Astrophysique de Bordeaux, pp 151–155, BordeauxGoogle Scholar
  33. Tornatore V, Haas R, Duev D, Pogrebenko S, Casey S, Molera Calvés G (2011) Determination of GLONASS satellite coordinates with respect to natural radio sources using the VLBI technique: preliminary results. In: Association Astronautique et Aéronautique de France e SEE (Société de l’Electricité, de l’Electronique et des Technologies del’Information et de la Communication) (ed) ETTC2011, European test and telemetry conference, Toulouse.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of TasmaniaHobartAustralia
  3. 3.DeutschesGeoForschungsZentrum GFZPotsdamGermany

Personalised recommendations