Advertisement

Journal of Geodesy

, Volume 88, Issue 7, pp 625–642 | Cite as

Homogeneous reprocessing of GPS, GLONASS and SLR observations

  • Mathias FritscheEmail author
  • Krzysztof Sośnica
  • Carlos Javier Rodríguez-Solano
  • Peter Steigenberger
  • Kan Wang
  • Reinhard Dietrich
  • Rolf Dach
  • Urs Hugentobler
  • Markus Rothacher
Original Article

Abstract

The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from \(-35\) and \(-38\) mm to \(-12\) and \(-13\) mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.

Keywords

GPS GLONASS SLR Multi-GNSS processing GNSS satellite clocks 

Notes

Acknowledgments

The IGS and ILRS are acknowledged for providing the high-quality GNSS and SLR data. The authors would like to thank the Swiss National Science Foundation and the Deutsche Forschungsgemeinschaft for the financial support within the project “Geodätische und geodynamische Nutzung reprozessierter GPS-, GLONASS- und SLR-Daten” (DFG Projects DI 473/39-1 and HU 1558/1-1, SNF Projects 200021E-131228 and 200021E-129032). The comments of the anonymous reviewers were highly appreciated.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Amiri-Simkooei AR (2013) On the nature of GPS draconitic year periodic pattern in multivariate position time series. J Geophys Res 118(5):2500–2511. doi: 10.1002/jgrb.50199 CrossRefGoogle Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386Google Scholar
  4. Bizouard C, Gambis D (2009) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) Geodetic reference frames, vol 134. IAG Symp, Munich, Germany, p 265–270, doi: 10.1007/978-3-642-00860-3_41
  5. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2). doi: 10.1029/2002JB002082
  6. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11):1083–1094. doi: 10.1007/s00190-009-0326-1 CrossRefGoogle Scholar
  7. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi: 10.1029/2005JB003629
  8. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502. doi: 10.1029/97JB01739 CrossRefGoogle Scholar
  9. Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32:L08306. doi: 10.1029/2005GL022441
  10. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software Version 5.0. Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  11. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  12. Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2011) Improved antenna phase center models for GLONASS. GPS Solut 15(1):49–65. doi: 10.1007/s10291-010-0169-5 CrossRefGoogle Scholar
  13. Dach R, Schaer S, Lutz S, Meindl M, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Center for orbit determination in Europe: IGS technical report, 2011 In: Meindl M, Dach R, Jean Y (eds) International GNSS service: technical report 2011. Astronomical Institute University of Bern, IGS Central Bureau, Bern, p 29–40Google Scholar
  14. Dilssner F, Springer T, Gienger G, Dow JM (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171. doi: 10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  15. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  16. Eanes RJ, Bettadpur S (1996) The CSR 3.0 global ocean tide model: diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry. Technical memorandum / Center for Space Research, the University of Texas at Austin, Center for Space ResearchGoogle Scholar
  17. Flechtner F (2007) AOD1B product description document, GRACE/Level-1 Documentation. http://isdc.gfz-potsdam.de, ftp://podaac.jpl.nasa.gov/allData/grace/docs/AOD1B_20070413
  18. Fliegel HF, Gallini TE, Swift ER (1992) Global positioning system radiation force model for geodetic applications. J Geophys Res 97(B1):559–568. doi: 10.1029/91JB02564 CrossRefGoogle Scholar
  19. Fliegel HF, Gallini TE (1996) Solar force modeling of block-IIR global positioning system satellites. J Spacecr Rockets 33(6):863–866CrossRefGoogle Scholar
  20. Flohrer C (2008) Mutual validation of satellite-geodetic techniques and its impact on GNSS orbit modeling. Geodätisch-geophysikalische Arbeiten in der Schweiz 75, ISBN 978-3-908440-19-2Google Scholar
  21. Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the earth’s crust from continental watermass and atmospheric pressure variations using GPS. J Geodyn 59–60:133–142. doi: 10.1016/j.jog.2011.04.001 CrossRefGoogle Scholar
  22. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi: 10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  23. McCarthy DD, Petit G (2004) IERS conventions (2003). No. 32 in IERS technical note, IERS Conventions Centre, Frankfurt am Main, GermanyGoogle Scholar
  24. Mendes V, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. doi: 10.1029/2004GL020308 CrossRefGoogle Scholar
  25. Ostini L (2012) Analysis and quality assessment of GNSS-derived parameter time series. Geodätisch-geophysikalische Arbeiten in der Schweiz PhD thesis. http://www.bernese.unibe.ch/publist/2012/phd/diss_lo_4web.pdf
  26. Pavlis EC (2009) SLRF2008: The ILRS reference frame for SLR POD contributed to ITRF2008. Ocean Surface Topography Science Team Meeting, SeattleGoogle Scholar
  27. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi: 10.1029/2011JB008916 Google Scholar
  28. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  29. Petit G, Luzum B (2010) IERS conventions (2010). No. 36 in IERS Technical Note, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  30. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910. doi: 10.5194/angeo-21-1897-2003 CrossRefGoogle Scholar
  31. Ray J, Altamimi Z, Collilieux X, van Dam TM (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  32. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  33. Riley WJ (2008) Handbook of frequency stability analysis. NIST Special Publication 1065, Oakland, USAGoogle Scholar
  34. Rodríguez-Solano CJ, Hugentobler U, Steigenberger P (2012a) Impact of Albedo radiation on GPS satellites. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, vol 136. IAG Symp, Buenos Aires, Argentina, p 113–119, doi: 10.1007/978-3-642-20338-1_14
  35. Rodríguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012b) Impact of earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi: 10.1007/s00190-011-0517-4 CrossRefGoogle Scholar
  36. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113:B08403. doi: 10.1029/2007JB005231
  37. Savcenko R, Bosch W (2012) EOT11A-Empirical ocean tide model from multi-mission satellite altimetry. DGFI Report No. 89, http://www.dgfi.badw.de/fileadmin/docs/dgfi_reports/DGFI_Report_89.pdf
  38. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y Google Scholar
  39. Senior KL, Ray JR, Beard RL (2008) Characterization of periodic variations in the GPS satellite clocks. GPS Solut 12(3):211–225. doi: 10.1007/s10291-008-0089-9 CrossRefGoogle Scholar
  40. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769. doi: 10.1007/s00190-013-0644-1 CrossRefGoogle Scholar
  41. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS. Adv Space Res 23(4):673–676CrossRefGoogle Scholar
  42. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. doi: 10.1029/2005JB003747
  43. Thaller D, Sośnica K, Dach R, Jäggi A, Steigenberger P (2012) GNSS orbit validation using SLR observations at CODE. Poster presentation at the International GNSS Service Workshop 2012, OlsztynGoogle Scholar
  44. Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, vol 139. IAG Symp, Melbourne, Australia, p 129–134. doi: 10.1007/978-3-642-37222-3_16
  45. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi: 10.1016/j.asr.2007.01.038 CrossRefGoogle Scholar
  46. van Dam TM, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654. doi: 10.1029/2000GL012120 CrossRefGoogle Scholar
  47. Weber R, Slater JA, Fragner E, Glotov V, Habrich H, Romero I, Schaer S (2005) Precise GLONASS orbit determination within the IGS/IGLOS pilot project. Adv Space Res 36(3):369–375. doi: 10.1016/j.asr.2005.08.051 CrossRefGoogle Scholar
  48. Willis P, Beutler G, Gurtner W, Hein G, Neilan RE, Noll C, Slater J (1999) IGEX: international GLONASS experiment scientific objectives and preparation. Adv Space Res 23(4):659–663. doi: 10.1016/S0273-1177(99)00147-7 CrossRefGoogle Scholar
  49. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi: 10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathias Fritsche
    • 1
    Email author
  • Krzysztof Sośnica
    • 3
  • Carlos Javier Rodríguez-Solano
    • 2
  • Peter Steigenberger
    • 2
  • Kan Wang
    • 4
  • Reinhard Dietrich
    • 1
  • Rolf Dach
    • 3
  • Urs Hugentobler
    • 2
  • Markus Rothacher
    • 4
  1. 1.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  3. 3.Astronomisches InstitutUniversität BernBernSwitzerland
  4. 4.Institut für Geodäsie und PhotogrammetrieEidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations