Advertisement

Journal of Geodesy

, Volume 88, Issue 5, pp 503–514 | Cite as

Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011

  • E. ForootanEmail author
  • O. Didova
  • M. Schumacher
  • J. Kusche
  • B. Elsaka
Short Note

Abstract

There are two spurious jumps in the atmospheric part of the Gravity Recovery and Climate Experiment-Atmosphere and Ocean De-aliasing level 1B (GRACE-AOD1B) products, which occurred in January-February of the years 2006 and 2010, as a result of the vertical level and horizontal resolution changes in the ECMWFop (European Centre for Medium-Range Weather Forecasts operational analysis). These jumps cause a systematic error in the estimation of mass changes from GRACE time-variable level 2 products, since GRACE-AOD1B mass variations are removed during the computation of GRACE level 2. In this short note, the potential impact of using an improved set of 6-hourly atmospheric de-aliasing products on the computations of linear trends as well as the amplitude of annual and semi-annual mass changes from GRACE is assessed. These improvements result from 1) employing a modified 3D integration approach (ITG3D), and 2) using long-term consistent atmospheric fields from the ECMWF reanalysis (ERA-Interim). The monthly averages of the new ITG3D-ERA-Interim de-aliasing products are then compared to the atmospheric part of GRACE-AOD1B, covering January 2003 to December 2010. These comparisons include the 33 world largest river basins along with Greenland and Antarctica ice sheets. The results indicate a considerable difference in total atmospheric mass derived from the two products over some of the mentioned regions. We suggest that future GRACE studies consider these through updating uncertainty budgets or by applying corrections to estimated trends and amplitudes/phases.

Keywords

Atmospheric Mass GRACE ITG3D-ERA-Interim GRACE-AOD1B ECMWF operational ERA-Interim reanalysis Spurious jumps Bias in mass estimations 

Notes

Acknowledgments

The authors thank R. Klees and P. Ditmar for their constructive comments. We further thank two anonymous reviewers for their helpful remarks which improved considerably the manuscript. E. Forootan and J. Kusche are grateful for the financial support provided by the German Research Foundation (DFG) under the project BAYES-G. We are grateful for the GRACE-AOD1B products that are provided by the German Research Centre for Geosciences GFZ, Potsdam, via the Information System and Data Centre (ISDC, http://isdc.gfz-potsdam.de/index.php). ITG3D-ERA-Interim was downloaded from the website of the Astronomical, Physical, and Mathematical Geodesy (APMG) group, Bonn University (http://www.igg.uni-bonn.de/apmg/index.php?id=itg3d_erainterim). We are also grateful to the ECMWF ERA-Interim data, downloaded from http://data-portal.ecmwf.int/data/d/interim_daily/.

References

  1. Barletta VR, Sorensen LS, Forsberg R (2012) Variability of mass changes at basin scale for Greenland and Antarctica. Cryosphere Discuss 6:3397–3446. doi: 10.5194/tcd-6-3397-2012 CrossRefGoogle Scholar
  2. Baur O, Kuhn M, Featherstone WE (2013) Continental mass change from GRACE over 2002–2011 and its impact on sea level. J Geod 87(2):117–125. doi: 10.1007/s00190-012-0583-2 CrossRefGoogle Scholar
  3. Brunnabend S-E, Rietbroek R, Timmermann R, Schröter J, Kusche J (2011) Improving mass redistribution estimates by modeling ocean bottom pressure uncertainties. J Geophys Res Oceans 116(C8). doi: 10.1029/2010JC006617
  4. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass with GRACE. Geophys Res Lett 31. doi: 10.1029/2004GL020461
  5. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  6. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J Geophys Res Oceans 118(7):3704–3711CrossRefGoogle Scholar
  7. Duan J, Shum CK, Guo J, Huang Z (2012) Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change. Geophys J Int 191:83–87. doi: 10.1111/j.1365-246X.2012.05640.x CrossRefGoogle Scholar
  8. Einarsson I, Höchner A, Wang R, Kusche J (2010) Gravity changes due to the Sumatra-Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination. Geophys J Int 183(2):733–747. doi: 10.1111/j.1365-246X.2010.04756.x CrossRefGoogle Scholar
  9. Fenoglio-Marc L, Rietbroek R, Grayek S, Becker M, Kusche J, Stanev E (2012) Water mass variation in the Mediterranean and Black Sea. J Geodyn 59–60, 168–182. doi: 10.1016/j.jog.2012.04.001
  10. Flechtner F (2007a) AOD1B product description document, Version 3.1, GRACE. Project Document JPL, pp 327–750, http://isdc.gfz-potsdam.de/grace
  11. Flechtner F (2007b) GFZ Level-2 processing standards document for level-2 product release 0004, GRACE 327–743, Rev. 1.0. Technical Report, Geoforschungszentrum, PotsdamGoogle Scholar
  12. Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. Advanced technologies in earth sciences, 2010. Part 2, pp131–142. doi: 10.1007/978-3-642-10228-8_11
  13. Flechtner F, Dahle C, Gruber C, König R, Michalak G, Neumayer K-H (2013) The GFZ RL05 GRACE gravity field model time series, Poster EGU2013-2993. Geophys Res Abstr, vol 15, EGU2013-2993, EGU General Assembly 2013, Vienna, AustriaGoogle Scholar
  14. Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Environ 124:427–443. doi: 0.1016/j.rse.2012.05.023 CrossRefGoogle Scholar
  15. Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth 118:2382–2396. doi: 10.1002/jgrb.50160 CrossRefGoogle Scholar
  16. Forootan E, Rietbroek R, Kusche J, Sharifi MA, Awange J, Schmidt M, Omondi P, Famiglietti J (2014) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. J Remote Sens Environ 140: 580–595. doi: 10.1016/j.rse.2013.09.025
  17. Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  18. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Technical report rep 327. Department of Geodesy and Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  19. Jacob Th, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi: 10.1038/nature10847 CrossRefGoogle Scholar
  20. Jensen L, Rietbroek R, Kusche J (2013) Land water contribution to sea level from GRACE and Jason-1 measurements. J Geophys Res Oceans 118(1). doi: 10.1002/jgrc.20058
  21. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. doi: 10.1111/j.1365-246X.2008.03922.x CrossRefGoogle Scholar
  22. Klees R, Zapreeva EA, Winsemius HC, Savenije HHG (2007) The bias in GRACE estimates of continental water storage variations. Hydrol Earth Syst Sci Discuss 11:1227–1241CrossRefGoogle Scholar
  23. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  24. Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the Earth system. J Geodyn 59–60: 1–8. doi: 10.1016/j.jog.2012.03.003
  25. Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G (2010) Global land water storage change from GRACE over 2002–2009; Inference on sea level. Comptes Rendus Geosci 342(3):179–188. doi:http://dx.doi.org/10.1016/j.crte.2009.12.004
  26. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer. USA. Water Resour Res 46(11):W11517. doi: 10.1029/2009WR008564 CrossRefGoogle Scholar
  27. Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13:1397–1420. doi: 10.1175/JHM-D-11-088.1 Google Scholar
  28. Ogawa R, Chao BF, Heki K (2011) Acceleration signal in GRACE time-variable gravity in relation to inter-annual hydrological changes. Geophys J Int 184:673–679. doi: 10.1111/j.1365-246X.2010.04843.x CrossRefGoogle Scholar
  29. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Amsterdam, Elsevier, p 426. ISBN:0444430148Google Scholar
  30. Rodell M, Chen J, Kato H, Famigietti J, Nigro J, Wilson C (2007) Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi: 10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  31. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  32. Salstein DA, Ponte RM, Cady-Pereira K (2008) Uncertainties in atmospheric surface pressure fields from global analyses. J Geophys Res 113:D14107. doi: 10.1029/2007JD009531 CrossRefGoogle Scholar
  33. Schrama E, Wouters B, Vermeersen B (2011) Present day regional mass loss of Greenland observed with satellite gravimetry. Surv Geophys 32:377–385. doi: 10.1007/s10712-011-9113-7 CrossRefGoogle Scholar
  34. Shum CK, Jun-Yi G, Hossain F, Duan J, Alsdorf DE, Duan X-J, Kuo C-Y, Lee K, Schmidt M, Wang L (2011) Inter-annual Water Storage Changes in Asia from GRACE Data. In: Lal R et al (eds) Climate change and food security in South Asia. doi: 10.1007/978-90-481-9516-9_6
  35. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):ETG 3-1– 3-13. doi: 10.1029/2001JB000576
  36. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33. doi: 10.1029/2005GL025285
  37. Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004a) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi: 10.1126/science.1099192 Google Scholar
  38. Tapley B, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920
  39. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756. doi: 10.1126/science.1123785 CrossRefGoogle Scholar
  40. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  41. Wahr J, Swenson S, Velicogna I, Zlotnicki V (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • E. Forootan
    • 1
    Email author
  • O. Didova
    • 2
  • M. Schumacher
    • 1
  • J. Kusche
    • 1
  • B. Elsaka
    • 1
    • 3
  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany
  2. 2.Faculty Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  3. 3.National Research Institute of Astronomy and GeophysicsHelwanEgypt

Personalised recommendations