Journal of Geodesy

, Volume 88, Issue 4, pp 403–409 | Cite as

The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach

  • Judith SchallEmail author
  • Annette Eicker
  • Jürgen Kusche
Short Note


In this contribution, we describe the global GOCE-only gravity field model ITG-Goce02 derived from 7.5 months of gradiometer and orbit data. This model represents an alternative to the official ESA products as it is computed completely independently, using a different processing strategy and a separate software package. Our model is derived using the short arc approach, which allows a very effective decorrelation of the highly correlated GOCE gradiometer and orbit data noise by introducing a full empirical covariance matrix for each arc, and gives the possibility to downweight ‘bad’ arcs. For the processing of the orbit data we rely on the integral equation approach instead of the energy integral method, which has been applied in several other GOCE models. An evaluation against high-resolution global gravity field models shows very similar differences of our model compared to the official GOCE results published by ESA (release 2), especially to the model derived by the time-wise approach. This conclusion is confirmed by comparison of the GOCE models to GPS/levelling and altimetry data.


Global gravity field model GOCE GPS Gradiometry Short arc approach Integral equation approach 



The support of the BMBF (Bundesministerium für Bildung und Forschung) within the frame of the Geotechnologien programme REAL GOCE and of BfG (Bundesanstalt für Gewässerkun de) through the project ’Meeresspiegel und Wasserhaushalt’ is gratefully acknowledged. We thank ESA for providing the GOCE data and Axel Rülke of the Federal Agency for Cartography and Geodesy in Germany, Franz Barthelmes (GFZ Potsdam), and Anno Löcher (University of Bonn) for providing the comparisons to independent data sets. The authors would like to thank editor Pavel Ditmar and the reviewers for their helpful comments.


  1. Bock H, Jäggi A, Meyer U, Visser P, Van Helleputte T, van den IJssel J, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geod 85(11):807–818CrossRefGoogle Scholar
  2. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. Presented at the ESA Living Planet Symp, Bergen, NorwayGoogle Scholar
  3. Dick S, Kleine E, Müller-Navarra S, Klein H, Komo H (2001) The operational circulation model of BSH (BSHcmod). Berichte des Bundesamtes für Seeschifffahrt und Hydrographie (Nr.29/2001)Google Scholar
  4. Ditmar P, van der Sluijs AvE (2004) A technique for modeling the earths gravity field on the basis of satellite accelerations. J Geodesy 78(1–2):12–33Google Scholar
  5. Drinkwater M, Haagmans R, Muzi D, Popescu A (2003) The GOCE gravity mission:ESAs first core earth explorer. In: Beutler G, Drinkwater M, Rummel R (eds) Earth gravity field from space-from sensors to earth sciences., Space Sciences Series of ISSI, vol 17Kluwer Academic Pub, Dordrecht, pp 419–432CrossRefGoogle Scholar
  6. EGG-C (2010) GOCE Standards. GP-TN-HPF-GS-0111, Issue 3.2. European Space Agency, NordwijkGoogle Scholar
  7. Eicker A (2008) Gravity field refinement by radial basis functions from in-situ satellite data. PhD thesis, Bonn UnivGoogle Scholar
  8. Eicker A, Schall J, Kusche J (2013) Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys J Int. doi: 10.1093/gji/ggt485
  9. Farahani HH, Ditmar P, Klees R, da Encarnação JT, Liu X, Zhao Q, Guo J (2013) Validation of static gravity field models using grace k-band ranging and goce gradiometry data. Geophys J Int 194:751–771CrossRefGoogle Scholar
  10. ICGEM (2013) International Centre for Global Earth Models.
  11. Koch K, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):641–652CrossRefGoogle Scholar
  12. Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76(11–12):641–652CrossRefGoogle Scholar
  13. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. PhD thesis, Bonn UnivGoogle Scholar
  14. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J Geod 78:462–480CrossRefGoogle Scholar
  15. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model.
  16. McCarthy D, Petit G (eds) (2004) IERS Conventions 2003. No. 32 in IERS Technical Notes, Verlag des Bundesamts fuer Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  17. Metzler B, Pail R (2005) Goce data processing: the spherical cap regularization approach. Studia Geophysica Geodaetica 49(4):441–462CrossRefGoogle Scholar
  18. Migliaccio F, Reguzzoni M, Gatti A, Sansó F, Herceg M (2011) A GOCE-only global gravity field model by the space-wise approach. In: Proceedings of 4th International GOCE User Workshop, Munich, Germany, ESA SP-696Google Scholar
  19. O’Keefe JA (1957) An application of jacobi’s integral to the motion of an earth satellite. Astron J 62:265CrossRefGoogle Scholar
  20. Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010) GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Proceedings of the ESA Living Planet Symposium, Bergen, Norway, ESA SP-686Google Scholar
  21. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843 Google Scholar
  22. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geohys Res 117(B4):4406Google Scholar
  23. Reigber C (1969) Zur Bestimmung des Gravitationsfeldes der Erde aus Satellitenbeobachtungen. DGK, München, p 137Google Scholar
  24. Reigber C (1995) Gravity field recovery from satellite tracking data. In: Fansó RR (ed) Theory of satellite geodesy and gravity field determination. Lecture Notes in Earth Sciences 25. Springer, New YorkGoogle Scholar
  25. Rülke A, Liebsch G, Sacher M, Schäfer U, Schirmer U, Ihde J (2013) Unification of European height system realizations. J Geod Sci 2(4):343–354Google Scholar
  26. Rummel R, Gruber T, Koop R (2004), High level processing facility forGOCE: products and processing strategy. In: Proceedings of the 2nd Intern. GOCE User, Workshop, ESA-SP569Google Scholar
  27. Schall J, Mayer-Gürr T, Eicker A, Kusche J (2011) A global gravitational field model from GOCE gradiometer observations. In: Proceedings of 4th International GOCE User Workshop  Munich, Germany, ESA SP-696Google Scholar
  28. Schneider M (1968) A general method of orbit determination. Library Translation, Royal Aircraft Establishment, Ministry of Technology, vol 1279, Farnborough, EnglandGoogle Scholar
  29. Sneeuw N, Van Gelderen M (1997) The polar gap. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Springer, pp 559–568Google Scholar
  30. Stummer C, Siemes C, Pail R, Frommknecht B, Floberghagen R (2012) Upgrade of the GOCE level 1b gradiometer processor. Adv in Space Res 49(4):739–752CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany

Personalised recommendations