Journal of Geodesy

, Volume 88, Issue 4, pp 335–350 | Cite as

Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles

Original Article

Abstract

As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is of importance to better understand as well as demonstrate the capabilities that a combination of BeiDou with GPS brings to positioning. In this contribution, a formal and empirical analysis is given of the single-epoch RTK positioning capabilities of such a combined system. This will be done for the single- and dual-frequency case, and in comparison with the BDS- and GPS-only performances. It will be shown that with the combined system, when more satellites are available, much larger than the customary cut-off elevations can be used. This is important, as such measurement set-up will significantly increase the GNSS applicability in constrained environments, such as e.g. in urban canyons or when low-elevation multipath is present.

Keywords

BeiDou (BDS) GPS Multi-GNSS Integer ambiguity resolution Real time kinematic (RTK) Positioning Cut-off elevation 

Notes

Acknowledgments

This work has been executed in the framework of the Positioning Program of the Cooperative Research Centre for Spatial Information (CRC–SI). The first author is the recipient of an Australian Research Council (ARC) Federation Fellowship (Project number FF0883188). All this support is gratefully acknowledged.

References

  1. Cao C, Jing G, Luo M (2008a) COMPASS satellite navigation system development. In: PNT challenges and opportunities symposium. Stanford, CaliforniaGoogle Scholar
  2. Cao W, O’Keefe K, Cannon M (2008b) Evaluation of COMPASS ambiguity resolution performance using geometric-based techniques with comparison to GPS and Galileo. In: Proceedings of the ION GNSS, SavannahGoogle Scholar
  3. Chen H, Huang Y, Chiang K, Yang M, Rau R (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin inst of eng 32(5):679–689CrossRefGoogle Scholar
  4. CSNO (2012) BeiDou navigation satellite system signal. In: Space interface control document by China satellite navigation office (CSNO). Open service signal B1I (Version 1.0). Tech. rep., December 2012Google Scholar
  5. Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65:130–143CrossRefGoogle Scholar
  6. Gibbons G (2013) GNSS News. Inside GNSS, p 1Google Scholar
  7. Goad C (1998) Short distance GPS models (Chap. 11). In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy, 2nd edn. Springer, Berlin, pp 457–482CrossRefGoogle Scholar
  8. Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A, Issler JL, Avila-Rodriguez J, Wallner S, Hein G (2007) Compass signal structure and first measurements. In: Proceedings of the ION GNSS, Fort Worth, pp 3015–3024Google Scholar
  9. Guo H, He H, Li J, Wang A (2011) Estimation and mitigation of the main errors for centimetre-level COMPASS RTK solutions over medium-long baselines. J Navig 64:S113–S126. doi: 10.1017/S0373463311000324 CrossRefGoogle Scholar
  10. Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its timescales. Metrol 48(4). doi: 10.1088/0026-1394/48/4/S13
  11. Huang YS, Tsai ML (2008) The impact of Compass/Beidou-2 on future GNSS: a perspective from Asia. In: Proceedings of the ION GNSS, Savannah, pp 2227–2238Google Scholar
  12. Li W, Teunissen PJG, Zhang B, Verhagen S (2013) Precise point positioning using GPS and Compass observations. In: Sun et al. (eds) Lect Notes in Electr Eng, Chap. 33, vol 2, pp 367–378Google Scholar
  13. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Riley S (2012) A COMPASS for Asia: first experience with the BeiDou-2 regional Navigation System. In: Proceedings of the IGS workshop 2012, Olsztyn, 23–27 July 2012Google Scholar
  14. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi: 10.1007/s10291-012-0272-x CrossRefGoogle Scholar
  15. Nadarajah N, Teunissen PJG, Raziq N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13(7):9435–9463CrossRefGoogle Scholar
  16. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82:473CrossRefGoogle Scholar
  17. Odijk D, Teunissen PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–533. doi: 10.1007/s10291-012-0298-0 CrossRefGoogle Scholar
  18. Odolinski R, Teunissen PJG, Odijk D (2013) An analysis of combined COMPASS/BeiDou-2 and GPS single- and multiple-frequency RTK positioning. In: Proceedings of the ION Pacific PNT, Honolulu, pp 69–90Google Scholar
  19. Qu J, Yuan H, Zhang X, Ouyang G (2012) Single-epoch COMPASS carrier-phase ambiguous resolution using three civil frequencies and special constellations. In: Proceedings of the ION GNSS, NashvilleGoogle Scholar
  20. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China Earth Sci 55:1079–1086. doi: 10.1007/s11430-012-4446-8 CrossRefGoogle Scholar
  21. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119. doi: 10.1007/s10291-012-0264-x CrossRefGoogle Scholar
  22. Steigenberger P, Hauschild A, Hugentobler U, Montenbruck O (2012) Performance analysis of Compass orbit and clock determination and Compass only PPP. In: Proceedings of the IGS Workshop 2012, Olsztyn, 23–27 July 2012Google Scholar
  23. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of COMPASS GEO and IGSO satellites. J Geod. doi: 10.1007/s00190-013-0625-4
  24. Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. J Geod 70:65–82CrossRefGoogle Scholar
  25. Teunissen PJG (1997) A canonical theory for short GPS baselines. Part I: The baseline precision, Part II: The ambiguity precision and correlation, Part III: The geometry of the ambiguity search space, Part IV: Precision versus reliability. J Geod 71(6): 320–336, 71(7): 389–401, 71(8): 486–501, 71(9): 513–525Google Scholar
  26. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72:606–612CrossRefGoogle Scholar
  27. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73:587–593 Google Scholar
  28. Teunissen PJG, de Jonge P, Tiberius C (1996) The volume of the GPS ambiguity search space and its relevance for integer ambiguity resolution In:Proceedings of the ION GPS, vol 9, pp 889–898Google Scholar
  29. Verhagen S, Teunissen PJG (2013) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. J Adv Space Res. http://dx.doi.org/10.1016/j.asr.2013.03.007
  30. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376CrossRefGoogle Scholar
  31. Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the compass satellite navigation system to global PNT users. Chinese Sci Bull 56(26):2813–2819CrossRefGoogle Scholar
  32. Zhang S, Guo J, Li B, Rizos C (2010) An analysis of satellite visibility and relative positioning precision of COMPASS. In: Proceedings of the symposium for Chinese professionals in GPS, pp 41–46. Singhai, 18–20 August 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial Sciences, GNSS Research CentreCurtin University of TechnologyPerthAustralia
  2. 2.Mathematical Geodesy and PositioningDelft University of TechnologyDelftThe Netherlands

Personalised recommendations