Journal of Geodesy

, Volume 88, Issue 4, pp 335–350 | Cite as

Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles

Original Article

Abstract

As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is of importance to better understand as well as demonstrate the capabilities that a combination of BeiDou with GPS brings to positioning. In this contribution, a formal and empirical analysis is given of the single-epoch RTK positioning capabilities of such a combined system. This will be done for the single- and dual-frequency case, and in comparison with the BDS- and GPS-only performances. It will be shown that with the combined system, when more satellites are available, much larger than the customary cut-off elevations can be used. This is important, as such measurement set-up will significantly increase the GNSS applicability in constrained environments, such as e.g. in urban canyons or when low-elevation multipath is present.

Keywords

BeiDou (BDS) GPS Multi-GNSS Integer ambiguity resolution Real time kinematic (RTK) Positioning Cut-off elevation 

References

  1. Cao C, Jing G, Luo M (2008a) COMPASS satellite navigation system development. In: PNT challenges and opportunities symposium. Stanford, CaliforniaGoogle Scholar
  2. Cao W, O’Keefe K, Cannon M (2008b) Evaluation of COMPASS ambiguity resolution performance using geometric-based techniques with comparison to GPS and Galileo. In: Proceedings of the ION GNSS, SavannahGoogle Scholar
  3. Chen H, Huang Y, Chiang K, Yang M, Rau R (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin inst of eng 32(5):679–689CrossRefGoogle Scholar
  4. CSNO (2012) BeiDou navigation satellite system signal. In: Space interface control document by China satellite navigation office (CSNO). Open service signal B1I (Version 1.0). Tech. rep., December 2012Google Scholar
  5. Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65:130–143CrossRefGoogle Scholar
  6. Gibbons G (2013) GNSS News. Inside GNSS, p 1Google Scholar
  7. Goad C (1998) Short distance GPS models (Chap. 11). In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy, 2nd edn. Springer, Berlin, pp 457–482CrossRefGoogle Scholar
  8. Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A, Issler JL, Avila-Rodriguez J, Wallner S, Hein G (2007) Compass signal structure and first measurements. In: Proceedings of the ION GNSS, Fort Worth, pp 3015–3024Google Scholar
  9. Guo H, He H, Li J, Wang A (2011) Estimation and mitigation of the main errors for centimetre-level COMPASS RTK solutions over medium-long baselines. J Navig 64:S113–S126. doi:10.1017/S0373463311000324 CrossRefGoogle Scholar
  10. Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its timescales. Metrol 48(4). doi:10.1088/0026-1394/48/4/S13
  11. Huang YS, Tsai ML (2008) The impact of Compass/Beidou-2 on future GNSS: a perspective from Asia. In: Proceedings of the ION GNSS, Savannah, pp 2227–2238Google Scholar
  12. Li W, Teunissen PJG, Zhang B, Verhagen S (2013) Precise point positioning using GPS and Compass observations. In: Sun et al. (eds) Lect Notes in Electr Eng, Chap. 33, vol 2, pp 367–378Google Scholar
  13. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Riley S (2012) A COMPASS for Asia: first experience with the BeiDou-2 regional Navigation System. In: Proceedings of the IGS workshop 2012, Olsztyn, 23–27 July 2012Google Scholar
  14. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x CrossRefGoogle Scholar
  15. Nadarajah N, Teunissen PJG, Raziq N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13(7):9435–9463CrossRefGoogle Scholar
  16. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82:473CrossRefGoogle Scholar
  17. Odijk D, Teunissen PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–533. doi:10.1007/s10291-012-0298-0 CrossRefGoogle Scholar
  18. Odolinski R, Teunissen PJG, Odijk D (2013) An analysis of combined COMPASS/BeiDou-2 and GPS single- and multiple-frequency RTK positioning. In: Proceedings of the ION Pacific PNT, Honolulu, pp 69–90Google Scholar
  19. Qu J, Yuan H, Zhang X, Ouyang G (2012) Single-epoch COMPASS carrier-phase ambiguous resolution using three civil frequencies and special constellations. In: Proceedings of the ION GNSS, NashvilleGoogle Scholar
  20. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China Earth Sci 55:1079–1086. doi:10.1007/s11430-012-4446-8 CrossRefGoogle Scholar
  21. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119. doi:10.1007/s10291-012-0264-x CrossRefGoogle Scholar
  22. Steigenberger P, Hauschild A, Hugentobler U, Montenbruck O (2012) Performance analysis of Compass orbit and clock determination and Compass only PPP. In: Proceedings of the IGS Workshop 2012, Olsztyn, 23–27 July 2012Google Scholar
  23. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of COMPASS GEO and IGSO satellites. J Geod. doi:10.1007/s00190-013-0625-4
  24. Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. J Geod 70:65–82CrossRefGoogle Scholar
  25. Teunissen PJG (1997) A canonical theory for short GPS baselines. Part I: The baseline precision, Part II: The ambiguity precision and correlation, Part III: The geometry of the ambiguity search space, Part IV: Precision versus reliability. J Geod 71(6): 320–336, 71(7): 389–401, 71(8): 486–501, 71(9): 513–525Google Scholar
  26. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72:606–612CrossRefGoogle Scholar
  27. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73:587–593 Google Scholar
  28. Teunissen PJG, de Jonge P, Tiberius C (1996) The volume of the GPS ambiguity search space and its relevance for integer ambiguity resolution In:Proceedings of the ION GPS, vol 9, pp 889–898Google Scholar
  29. Verhagen S, Teunissen PJG (2013) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. J Adv Space Res. http://dx.doi.org/10.1016/j.asr.2013.03.007
  30. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376CrossRefGoogle Scholar
  31. Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the compass satellite navigation system to global PNT users. Chinese Sci Bull 56(26):2813–2819CrossRefGoogle Scholar
  32. Zhang S, Guo J, Li B, Rizos C (2010) An analysis of satellite visibility and relative positioning precision of COMPASS. In: Proceedings of the symposium for Chinese professionals in GPS, pp 41–46. Singhai, 18–20 August 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial Sciences, GNSS Research CentreCurtin University of TechnologyPerthAustralia
  2. 2.Mathematical Geodesy and PositioningDelft University of TechnologyDelftThe Netherlands

Personalised recommendations