Advertisement

Journal of Geodesy

, Volume 88, Issue 1, pp 45–63 | Cite as

Non-linear station motions in epoch and multi-year reference frames

  • Mathis BloßfeldEmail author
  • Manuela Seitz
  • Detlef Angermann
Original Article

Abstract

In the conventions of the International Earth Rotation and Reference Systems Service (e.g. IERS Conventions 2010), it is recommended that the instantaneous station position, which is fixed to the Earth’s crust, is described by a regularized station position and conventional correction models. Current realizations of the International Terrestrial Reference Frame use a station position at a reference epoch and a constant velocity to describe the motion of the regularized station position in time. An advantage of this parameterization is the possibility to provide station coordinates of high accuracy over a long time span. Various publications have shown that residual non-linear station motions can reach a magnitude of a few centimeters due to not considered loading effects. Consistently estimated parameters like the Earth Orientation Parameters (EOP) may be affected if these non-linear station motions are neglected. In this paper, we investigate a new approach, which is based on a frequent (e.g. weekly) estimation of station positions and EOP from a combination of epoch normal equations of the space geodetic techniques Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI). The resulting time series of epoch reference frames are studied in detail and are compared with the conventional secular approach. It is shown that both approaches have specific advantages and disadvantages, which are discussed in the paper. A major advantage of the frequently estimated epoch reference frames is that the non-linear station motions are implicitly taken into account, which is a major limiting factor for the accuracy of the secular frames. Various test computations and comparisons between the epoch and secular approach are performed. The authors found that the consistently estimated EOP are systematically affected by the two different combination approaches. The differences between the epoch and secular frames reach magnitudes of \(23.6~\upmu \hbox {as}\) (0.73 mm) and \(39.8~\upmu \hbox {as}\) (1.23 mm) for the x-pole and y-pole, respectively, in case of the combined solutions. For the SLR-only solutions, significant differences with amplitudes of \(77.3~\upmu \hbox {as}\) (2.39 mm) can be found.

Keywords

ITRF Epoch reference frame Multi-year reference frame Inter-technique combination EOP Non-linear station motions Center of Mass Center of Network 

Notes

Acknowledgments

The work described in this paper was funded by the German Research Foundation (DFG) within the research group ’Earth Rotation and Global Dynamic Processes’ (FOR 584) and contributes to the DFG research group ’Space-time reference systems for monitoring global change and for precise navigation’ (FOR1503). The authors thank P. Steigenberger at the Technische Universität München and S. Böckmann at the Universität Bonn for computing the GPS and VLBI input data. Furthermore, the authors want to thank the associate editor J. Freymueller and the three anonymous reviewers who helped to improve the quality of the paper a lot. Finally, the authors want to thank H. Drewes for discussions about essential definitions made in the paper.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2002), ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10). doi: 10.1029/2001JB000561
  3. Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computations. In: Tregoning P, Rizos C, Sanso F (eds) Dynamic planet. International association of geodesy symposia, vol 130. Springer, Berlin, pp 595–602. doi: 10.1007/978-3-540-49350-186
  4. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS Combination Center at DGFI: a terrestrial reference frame realization 2003. Reihe B, Verlag der Bayerischen Akademie der WissenschaftenGoogle Scholar
  5. Bawden GW, Thatcher W, Stein RS, Hudnut KW, Peltzer G (2001) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Lett Nat 412:812–815. doi: 10.1038/35090558 CrossRefGoogle Scholar
  6. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R, Jr, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32(L16308). doi: 10.1029/2005GL023491
  7. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid. Earth, J Geophys Res 108(B2). doi: 10.1029/2002JB008082
  8. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7). doi: 10.1029/2001JB000570
  9. Bloßfeld M, Müller H, Angermann D (2012a) Adjustment of EOP and gravity field parameters from SLR observations. In: Proceedings of the 17th international workshop on laser ranging. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Mitteilungen des Bundesamtes für Kartographie und GeodäsieGoogle Scholar
  10. Bloßfeld M, Müller H, Seitz M, Angermann D (2012b) Benefits of SLR in epoch reference frames. In: Proceedings of the 17th international workshop on laser ranging. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Mitteilungen des Bundesamtes für Kartographie und GeodäsieGoogle Scholar
  11. Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solutions. In: Proceedings of the 18th European VLBI for geodesy and astronomy working meeting. Wien, Geowissenschaftliche MitteilungenGoogle Scholar
  12. Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock, mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567. doi: 10.1146/annurev.earth.36.031207.124326 CrossRefGoogle Scholar
  13. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geodesy 86(1):1–14. doi: 10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  14. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009), Effect of the satellite laser ranging network distribution on geocenter motion estimates. J Geophys Res 114(B4). doi: 10.1029/2008.JB005727
  15. Davis JL, Wernicke BP, Tamisiea ME (2012), On seasonal signals in geodetic time series. J Geophys Res 117(B1). doi: 10.1029/2011JB008690
  16. Dong D, Yunck T, Heflin M (2003), Origin of the international terrestrial reference frame. J Geophys Res 108(B4). doi: 10.1029/2002JB002035
  17. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geodesy 82(6):331–346. doi: 10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  18. Freymueller JT (2010) Active tectonics of plate boundary zones and the continuity of plate boundary deformation from Asia to North America. Curr Sci 99(12):1719–1732Google Scholar
  19. Gerstl M (1997) Parameterschätzung in DOGS-OC, 2nd edn. DGFI Int. Bericht Nr. MG/01/1996/DGFIGoogle Scholar
  20. Gerstl M, Kelm R, Müller H, Ehrensperger W (2001) DOGS-CS Kombination und Lösung gro-ßer Gleichungssysteme. DGFI Int. Bericht Nr. MG/01/1995/DGFIGoogle Scholar
  21. Koch KR (1997) Parameterschätzung und Hypothesentests in linearen Modellen, 3rd edn. Dummler, Bonn. ISBN 3427789233Google Scholar
  22. Kreemer C, Lavallée DA, Blewitt G, Holt WE (2006) On the stability of a geodetic no-net-rotation frame and its implication for the International Terrestrial Reference Frame. Geophys Res Lett 133(17): doi: 10.1029/2006GL027058
  23. Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Nachr. d. Kgl. Gesellsch. d. Wiss. und der Georg-August-Univ, Göttingen, pp 33–98Google Scholar
  24. Meisel B, Angermann D, Krügel M, Drewes H, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2005) Refined approaches for terrestrial reference frame computations. Adv Space Res 36(3):350–357. doi: 10.1016/j.asr.2005.04.057 CrossRefGoogle Scholar
  25. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geodesy 83(8):787–792. doi: 10.1007/s00190-008-0284-z CrossRefGoogle Scholar
  26. Petit G, Luzum B (2010) IERS Conventions (2010). IERS Technical Note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, ISBN 978-3-89888-989-6Google Scholar
  27. Petrov L, Boy JP (2004), Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B3). doi: 10.1029/2003JB002500
  28. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  29. Rothacher M, Angermann D, Artz T, Bosch W, Drewes H, Böckmann S, Gerstl M, Kelm R, König D, König R, Meisel B, Müller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer V, Thaller D (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J Geodesy 85(10):679–705. doi: 10.1007/s00190-011-0475-x CrossRefGoogle Scholar
  30. Sarti P, Abbondanza C, Petrov L, Negusini M (2011) Height bias and scale effect induced by antenna gravitational deformation in geodetic VLBI data analysis. J Geodesy 85(1):1–8. doi: 10.1007/s00190-010-0410-6 CrossRefGoogle Scholar
  31. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geodesy 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  32. Schön S, Kutterer HJ (2007) A comparative analysis of uncertainty modelling in GPS data analysis. In: Tregoning P, Rizos C, Sideris MG (eds) Dynamic planet, international association of geodesy symposia, vol 130, Springer, Berlin, pp 137–142. doi: 10.1007/978-3-540-49350-1_22
  33. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems. Reihe C, Verlag der Bayerischen Akademie der WissenschaftenGoogle Scholar
  34. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The DGFI realization of ITRS: DTRF2008. J Geodesy 86(12):1097–1123. doi: 10.1007/s00190-012-0567-2 CrossRefGoogle Scholar
  35. Suito H, Freymueller JT (2009), A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res 114(B11). doi: 10.1029/2008JB005954
  36. Thaller D (2008) Inter-technique combination based on homogeneous equation systems including station coordinates, Earth orientation and troposphere parameters. Scientific Technical Report STR 08/15, Deutsches GeoForschungsZentrum (GFZ), doi: 10.2312/GFZ.b103-08153
  37. Torge W (2001) Geodesy. 3rd edn. deGruyter, Berlin. ISBN 3-11-017072-8Google Scholar
  38. Tregoning P, van Dam T (2005), Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res 110(B3). doi: 10.1029/2004JB003334
  39. Tregoning P, Watson C (2009), Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(B9). doi: 10.1029/2009JB006344
  40. van Dam TM, Blewitt G, Heflin B (1994) Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J Geophys Res 99(12):23939–23950. doi: 10.1029/94JB02122 Google Scholar
  41. van Dam TM, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Nontidal ocean loading: amplitudes and potential effects in GPS height time series. J Geodesy 86(11):1043–1057. doi: 10.1007/s00190-012-0564-5 CrossRefGoogle Scholar
  42. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi: 10.1016/j.jog.2012.01.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathis Bloßfeld
    • 1
  • Manuela Seitz
    • 1
  • Detlef Angermann
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany

Personalised recommendations