Advertisement

Journal of Geodesy

, Volume 88, Issue 1, pp 31–43 | Cite as

Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation

  • Basem Elsaka
  • Jean-Claude Raimondo
  • Phillip Brieden
  • Tilo Reubelt
  • Jürgen Kusche
  • Frank Flechtner
  • Siavash Iran Pour
  • Nico Sneeuw
  • Jürgen Müller
Original Article

Abstract

The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees \({<}50\)), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.

Keywords

Numerical simulation Future gravity missions Temporal gravity field 

Notes

Acknowledgments

The authors would like to thank the reviewers for their valuable comments. We gratefully acknowledge Dr. Pavel Ditmar, the Editor, for his valuable comments and corrections to improve this manuscript. Additionally, the financial support of the German Federal Ministry for Education and Research (BMBF) and the German Research Foundation (DFG) within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program (grant 03G0729) is acknowledged.

References

  1. Anselmi A, Cesare S, Visser P, Van Dam T, Sneeuw N, Gruber T, Altes B, Christophe B, Cossu F, Ditmar P, Murboeck M, Parisch M, Renard M, Reubelt T, Sechi G, Texieira Da Encarnacao JG (2011) Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field. ESA Contract No. 22643/09/NL/AF, Executive Summary, Thales Alenia Space report SD-RP-AI-0721, March 2011Google Scholar
  2. Bender P, Wiese D, Nerem R (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits, paper presented at third international symposium on formation flying, Eur. Space Agency, Noordwijk, Netherlands, 23–25 AprilGoogle Scholar
  3. Christophe B, Marque J-P, Foulon B (2010) Accelerometers for the ESA GOCE Mission: one year of in-orbit results. Presentation at EGU 2010, Vienna. ESA GOCE website. http://earth.esa.int/pub/ESA_DOC/GOCE/Accelerometers%20for%20the%20ESA%20GOCE%20Mission%20-%20one%20year%20of%20in-orbit%20results.pdf. Accessed on 24 September 2012
  4. Coddington I, Swann WC, Nenadovic L, Newbury NR (2009) Rapid and precise absolute distance measurements at long range. Nature Photonics 3:351–356. doi: 10.1038/nphoton.2009.94 CrossRefGoogle Scholar
  5. Elsaka B (2010) Simulated satellite formation flights for detecting the temporal variations of the earth’s gravity field. University of Bonn, Germany, Ph.D DissertationGoogle Scholar
  6. Elsaka B (2014) Sub-month gravity field recovery from simulated multi-GRACE mission type. Acta Geophys. doi: 10.2478/s-11600-013-0170-9 (in press)
  7. Elsaka B, Kusche J, Ilk KH (2012) Recovery of the earth’s gravity field from formation-flying satellites: temporal aliasing issues. Adv Space Res 50:1534–1552. doi: 10.1016/j.asr.2012.07.016 CrossRefGoogle Scholar
  8. Flechtner F, Watkins M, Morton P, Webb F (2013) Status of the GRACE Follow-on Mission. Proceedings of the International Association of Geodesy Symposia Gravity, Geoid and Height System (GGHS2012), 9.-11.10.2012, Venice, Italy, IAGS-D-12-00141 (accepted)Google Scholar
  9. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, Koenig R, Neu-mayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Ge-odesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6):331–346. doi: 10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  10. Gerlach C, Flury J, Frommknecht B, Flechtner F, Rummel R (2005) GRACE performance study and sensor analysis. In: Proceedings of the Joint CHAMP/GRACE Science Meeting, GeoForschungsZentrum Potsdam, July 6–8, 2004, p. 6.1, http://www-app2.gfz-potsdam.de/pb1/JCG/Gerlach-etal_jcg.pdf
  11. Gruber T, Bamber J, Bierkens M, Dobslaw H, Murböck M, Thomas M, van Beek L, van Dam T, Vermeersen LLA, Visser P (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data 3:19–35. doi: 10.5194/essd-3-19-2011 CrossRefGoogle Scholar
  12. Hedin A (1987) MSIS-86 Thermospheric Model. JGR 92(A5):4649–4662. doi: 10.1029/JA092iA05p04649
  13. Iran Pour S, Reubelt T, Sneeuw N (2013) Quality assessment of sub-Nyquist recovery from future gravity satellite missions. J Adv Space Res 52(5):916–929CrossRefGoogle Scholar
  14. Knocke P, Ries J, Tapley B (1988) Earth radiation pressure effects on satellites. In: Proceedings of the AIAA/AAS astrodynamics specialist conference, Washington DC, pp 577–586Google Scholar
  15. Koch KR (1997) Parameterschätzung und Hypothesentests. Dümmler, BonnGoogle Scholar
  16. Koch KR, Kusche J (2001) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):641–652Google Scholar
  17. Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Cox C, Klos-ko S, Luthcke S, Torrence M, Wang Y, Williamson R, Pavlis E, Rapp R, Olson T (1998) the development of the joint NASA GSFC and the Na-tional Imagery and Mappping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, July, 1998Google Scholar
  18. Mayer-Gürr T, Ilk K-H, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP Gravitiy Field Model from short kinematical arcs of a one-year observation period. J Geod 78:462–480CrossRefGoogle Scholar
  19. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. University of Bonn, Germany, Ph.D DissertationGoogle Scholar
  20. NG2 Team (2011) Assessment of a next generation gravity mission to monitor the variations of earth’s gravity field. Final Report, ESTEC Contract No.: 22672/09/NL/AF. Doc. No.: NG2-ASG-FR, Issue 1, 10 Oct. 2011Google Scholar
  21. Ray R (2008) GOT4.7 (private communication). Extension of Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry GOT99.2. NASA Tech Memo 209478, Sept. 1999Google Scholar
  22. Reubelt T, Sneeuw N, Iran Pour S (2011) Quick-look gravity field analysis of formation scenarios selection. In: Münch U, Dransch W (eds) Observation of the system earth from space, GEOTECHNOLOGIEN Science Report No. 17, Status Seminar, 4 (October 2010) Rheinische Friedrich Wilhelms Universität Bonn. Koordinierungsbüro GEOTECHNOLOGIEN, PotsdamGoogle Scholar
  23. Reubelt T, Sneeuw N, Iran Pour S, Hirth M, Fichter W, Müller J, Brieden Ph, Flechtner F, Raimondo JC, Kusche J, Elsaka B, Gruber T, Pail R, Murböck M, Doll B, Sand R, Wang X, Klein V, Lezius M, Danzmann K, Heinzel G, Sheard B, Rasel E, Gilowski M, Schubert C, Schäfer W, Rathke A, Dittus H, Pelivan I (2014) Future gravity field satellite missions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space–CHAMP, GRACE, GOCE and future missions. GEOTECHNOLOGIEN Science Report No. 20, Series “Advanced Technologies in Earth Sciences”. Springer, Berlin, ISBN 978-3-642-32134-4 (in press)Google Scholar
  24. Savcenko R, Bosch W (2008) EOT08a–empirical ocean tide model from multi-mission satellite altimetry. Report No. 81, Deutsches Geodätisches Forschung-sinstitut (DGFI), MünchenGoogle Scholar
  25. Sharifi M, Sneeuw N, Keller W (2007) Gravity Recovery capability of four generic satellite formations. In: Kilicoglu A, Forsberg R (eds) Gravity Field of the Earth. General Command of Mapping, ISSN 1300–5790. Special issue, vol 18, pp 211–216Google Scholar
  26. Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein W, Folkner W (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86(12):1083CrossRefGoogle Scholar
  27. Sneeuw N, Sharifi M, Keller W (2008) Gravity recovery from formation flight missions. Xu P, Liu J, Athanasios D (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy, vol 132. Springer, Berlin, pp 29–34Google Scholar
  28. Standish EM (1998) JPL planetary and lunar ephemerides, “DE405/LE405”. IOM 312.F-98-048, August 26 1998Google Scholar
  29. Visser P, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181:789–805Google Scholar
  30. Wagner C, McAdoo D, Klokočník J, Kostelecký J (2006) Degradation of geo-potential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80(2):94–103CrossRefGoogle Scholar
  31. Wiese D, Folkner W, Nerem R (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83:569–581. doi: 10.1007/s00190-008-0274-1 CrossRefGoogle Scholar
  32. Wiese D, Nerem R, Han S.-C (2011) Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. J Geophys Res 116(B11):405. doi: 10.1029/2011JB008375 Google Scholar
  33. Wiese D, Nerem R, Lemoine F (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geod 86:81–98. doi: 10.1007/s00190-011-0493-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Basem Elsaka
    • 1
    • 5
  • Jean-Claude Raimondo
    • 2
  • Phillip Brieden
    • 3
  • Tilo Reubelt
    • 4
  • Jürgen Kusche
    • 1
  • Frank Flechtner
    • 2
  • Siavash Iran Pour
    • 4
  • Nico Sneeuw
    • 4
  • Jürgen Müller
    • 3
  1. 1.IGG, Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  2. 2.GFZ, German Research Centre for GeoscienceOberpfaffenhofenGermany
  3. 3.IfE, Institute of GeodesyUniversity of HannoverHannoverGermany
  4. 4.GIS, Institute of GeodesyUniversity of StuttgartStuttgartGermany
  5. 5.National Research Institute of Astronomy and Geophysics (NRIAG)HelwanEgypt

Personalised recommendations