Journal of Geodesy

, Volume 87, Issue 10–12, pp 981–1001 | Cite as

Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns

  • Kamil TekeEmail author
  • Tobias Nilsson
  • Johannes Böhm
  • Thomas Hobiger
  • Peter Steigenberger
  • Susana García-Espada
  • Rüdiger Haas
  • Pascal Willis
Original Article


Continuous, very long baseline interferometry (VLBI) campaigns over 2 weeks have been carried out repeatedly, i.e., CONT02 in October 2002, CONT05 in September 2005, CONT08 in August 2008, and CONT11 in September 2011, to demonstrate the highest accuracy the current VLBI was capable at that time. In this study, we have compared zenith total delays (ZTD) and troposphere gradients as consistently estimated from the observations of VLBI, Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) at VLBI sites participating in the CONT campaigns. We analyzed the CONT campaigns using the state-of-the-art software following common processing strategies as closely as possible. In parallel, ZTD and gradients were derived from numerical weather models, i.e., from the global European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields, the High Resolution Limited Area Model (European sites), the Japan Meteorological Agency-Operational Meso-Analysis Field (MANAL, over Japan), and the Cloud Resolving Storm Simulator (Tsukuba, Japan). Finally, zenith wet delays were estimated from the observations of water vapor radiometers (WVR) at sites where the WVR observables are available during the CONT sessions. The best ZTD agreement, interpreted as the smallest standard deviation, was found between GNSS and VLBI techniques to be about 5–6 mm at most of the co-located sites and CONT campaigns. We did not detect any significant improvement in the ZTD agreement between various techniques over time, except for DORIS and MANAL. On the other hand, the agreement and thus the accuracy of the troposphere parameters mainly depend on the amount of humidity in the atmosphere.


Troposphere delays Space geodetic techniques Numerical weather models Water vapor radiometers 



This work is supported by the Austrian Science Fund (FWF) project, P20902-N10 (GGOS Atmosphere). Kamil Teke acknowledges Scientific and Technological Research Council of Turkey (Tübitak) for the financial support of the postdoctoral research programme, 2219. The work of DORIS was supported by the Centre National d’Etudes Spatiales (CNES) and based on observations with DORIS embarked on SPOTs, TOPEX/Poseidon, Envisat, Jason-2 and Cryosat-2 satellites. This paper is IPGP-3403 contribution. We used in this study the data provided by the International VLBI Service for Geodesy and Astrometry (IVS, Schuh and Behrend 2012), the International GNSS Service (IGS, Dow et al. 2009), the International DORIS Service (IDS, Willis et al. 2010a), the Centre for Orbit Determination in Europe (CODE, Dach et al. 2009), the European Centre for Medium-Range Weather Forecast (ECMWF, Dee et al. 2011), the Japan Meteorological Agency (JMA, Saito et al. 2006), and the authors would like to thank all components of the aforementioned services. The authors want to acknowledge SMHI and AEMet for providing HIRLAM (Undén et al. 2002) data for different grid spacings for all CONT sessions.

Supplementary material

190_2013_662_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (pdf 97 KB)
190_2013_662_MOESM2_ESM.pdf (421 kb)
Supplementary material 2 (pdf 420 KB)
190_2013_662_MOESM3_ESM.pdf (637 kb)
Supplementary material 3 (pdf 636 KB)
190_2013_662_MOESM4_ESM.pdf (1.6 mb)
Supplementary material 4 (pdf 1630 KB)
190_2013_662_MOESM5_ESM.pdf (3 mb)
Supplementary material 5 (pdf 3024 KB)


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Behrend D, Cucurull L, Vila J, Haas R (2000) An inter-comparision study to estimate zenith wet delays using VLBI, GPS, and NWP models. Earth Planets Space 52:691–694Google Scholar
  3. Behrend D, Haas R, Pino D, Gradinarsky LP, Keihm SJ, Schwarz W, Cucurull L, Rius A (2002) MM5 derived ZWDs compared to observational results from VLBI, GPS and WVR. Phys Chem Earth 27:3301–3308Google Scholar
  4. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS Meteorology. Remote sensing of atmosphere water vapor using the Global Positioning System. J Geophys Res 97(D14):15787–15801. doi: 10.1029/92JD01517 CrossRefGoogle Scholar
  5. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame. In: Drewes H (ed) Geodetic reference frames. IAG Symp, vol 134, pp 265–270. doi: 10.1007/978-3-642-00860-3_41
  6. Bock O, Willis P, Lacarra M, Bosser P (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46(12):1648–1660. doi: 10.1016/j.asr.2010.05.018 Google Scholar
  7. Böhm J, Schuh H (2007) Troposphere gradients from the ECMWF in VLBI analysis. J Geod 81(6–8):403–408. doi: 10.1007/s00190-007-0144-2 CrossRefGoogle Scholar
  8. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Center for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi: 10.129/2005JB003629 CrossRefGoogle Scholar
  9. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI Software VieVS. Geodesy for Planet Earth. In: Kenyon S, Pacino MC, Marti U (eds) Proceedings of the 2009 IAG symp, Buenos Aires. International Association of Geodesy Symposia Series, vol 136, pp 1007–1011. doi: 10.1007/978-3-642-20338-1_126 (2009)
  10. Brunner FK, Rüeger JM (1992) Theory of the local scale parameter method for EDM. Bull Géodésique 66:355–364CrossRefGoogle Scholar
  11. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis from space geodetic data. J Geophys Res 102(B9):20489–20502. doi: 10.1029/97JB01739 CrossRefGoogle Scholar
  12. Cucurull L, Navascues B, Ruffini G, Elosegui P, Rius A, Vila J (2000) The use of GPS to validate NWP systems: the HIRLAM model. J Atmos Ocean Technol 17(6):773–787CrossRefGoogle Scholar
  13. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0, Astronomical Institute, University of BernGoogle Scholar
  14. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  15. Dach R, Schaer S, Lutz S, Meindl M, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Center for Orbit Determination in Europe (CODE), In: Meindl M, Dach R, Jean Y (eds) International GNSS Service Technical Report 2011Google Scholar
  16. Davis JL, Herring TA, Shapiro II (1991) Effects of atmospheric modeling errors on determinations of baseline vectors from VLBI. J Geophys Res 96(B1):643–650. doi: 10.1029/90JB01503 CrossRefGoogle Scholar
  17. Davis JL, Elgered G, Niell AE, Kuehn CE (1993) Ground-based measurements of gradients in the “wet” radio refractivity of air. Radio Sci 28(6):1003–1018. doi: 10.1029/93RS01917 CrossRefGoogle Scholar
  18. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. doi: 10.1029/RS020i006p01593 CrossRefGoogle Scholar
  19. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Holm E, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally T, Monge-Sanz B, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  20. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  21. Elgered G (1993) Tropospheric radio path delay from ground-based microwave radiometry. In: Janssen M (ed) Atmospheric remote sensing by microwave radiometry. Wiley, New York, pp 215–258Google Scholar
  22. Elgered G, Jarlemark POJ (1998) Ground-based microwave radiometry and long term observations of atmospheric water vapor. Radio Sci 33(3):707–717. doi: 10.1029/98RS00488 CrossRefGoogle Scholar
  23. Fey A, Gordon D, Jacobs CS (2009) The second realization of the International Celestial Reference Frame by very long baseline interferometry. IERS Technical Note, vol 35. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, ISBN 3-89888- 918-6Google Scholar
  24. Gradinarsky LP, Haas R, Elgered G, Johansson JM (2000) Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space 52(10):695–698Google Scholar
  25. Gobinddass ML, Willis P, Menvielle M, Diament M (2010) Refining DORIS atmospheric drag estimation in preparation of ITRF2008. In: Willis P (ed) DORIS special issue: precise orbit determination and applications to the Earth sciences. Adv Space Res, vol 46, no (12), pp 1566–1577. doi: 10.1016/j.asr.2010.04.004
  26. Gobinddass ML, Willis P, Sibthorpe AJ, Zelensky NP, Lemoine FG, Ries JC, Ferland R, Bar-Sever YE, de Viron O, Diament M (2009) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11):1279–1287. doi: 10.1016/j.asr.2009.08.004 CrossRefGoogle Scholar
  27. Heinkelmann R, Böhm J, Bolotin S, Engelhardt G, Haas R, Lanotte R, MacMillan DS, Negusini M, Skurikhina E, Titov O, Schuh H (2011) VLBI-derived troposphere parameters during CONT08. J Geod 85(7):377–393. doi: 10.1007/s00190-011-0459-x CrossRefGoogle Scholar
  28. Herring TA (1986) Precision of vertical estimates from very long baseline interferometry. J Geophys Res 91(B9):9177–9182. doi: 10.1029/JB091iB09p09177 CrossRefGoogle Scholar
  29. Hobiger T, Ichikawa R, Koyama Y, Kondo T (2008a) Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J Geophys Res 113:D20302. doi: 10.1029/2008JD010503 CrossRefGoogle Scholar
  30. Hobiger T, Ichikawa R, Takasu T, Koyama Y, Kondo T (2008b) Ray-traced troposphere slant delays for precise point positioning. Earth Planets Space 60(5):e1–e4Google Scholar
  31. Hobiger T, Shimada S, Shimizu S, Ichikawa R, Koyama Y, Kondo T (2010) Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models. J Atmos Solar Terr Phys 72(2–3):262–270. doi: 10.1016/j.jastp.2009.11.018 CrossRefGoogle Scholar
  32. Jarlemark P (1997) Analysis of temporal and spatial variations in atmospheric water vapor using microwave radiometry, PhD Thesis, Technical Report 308, School of Electrical Engineering, Chalmers University of Technology, GöteborgGoogle Scholar
  33. Le Bail K (2006) Estimating the noise in space-geodetic positioning: the case of DORIS. J Geod 80(8–11):541–565. doi: 10.1007/s00190-006-0088-y CrossRefGoogle Scholar
  34. Lyard F, Lefevre F, Lettelier T, Francis O (2006) Modelling the global ocean tides, Modern insights from FES2004. Ocean Dyn 56(6):394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  35. MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651. doi: 10.1029/93JB02162 CrossRefGoogle Scholar
  36. MacMillan DS, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24(4):453–456. doi: 10.1029/97GL00143 CrossRefGoogle Scholar
  37. Nafisi V, Urquhart L, Santos M, Nievinski F, Böhm J, Wijaya D, Schuh H, Ardalan A, Hobiger T, Ichikawa R, Zus F, Wickert J, Gegout P (2012) Comparison of ray-tracing packages for troposphere delays. IEEE Trans Geosci Remote Sens 50(2):469–481CrossRefGoogle Scholar
  38. Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18:830–850CrossRefGoogle Scholar
  39. Ning T, Haas R, Elgered G, Willén U (2012) Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. J Geod 86(7):565–575. doi: 10.1007/s00190-011-0527-2 CrossRefGoogle Scholar
  40. Petit G, Luzum B (2010) IERS conventions 2010, IERS Technical Note; 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main., ISBN 3-89888-989-6Google Scholar
  41. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline Interferometry observations. J Geophys Res 109(B3):B03405. doi: 10.1029/2003JB002500 CrossRefGoogle Scholar
  42. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  43. Rummel R, Rothacher M, Beutler G (2005) Integrated Global Geodetic Observing System (IGGOS)-science rationale. J Geodyn 40(4–5):357–362. doi: 10.1016/j.jog.2005.06.003 CrossRefGoogle Scholar
  44. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. Geophys Monogr Ser 15:274–251Google Scholar
  45. Saito K, Fujita T, Yamada Y, Ishida JI, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai S, Muroi C, Kato T, Eito H, Yamazaki Y (2006) The operational JMA nonhydrostatic mesoscale model. Mon Weather Rev 134:1266–1298CrossRefGoogle Scholar
  46. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi: 10.1016/j.jog.2012.07.007 CrossRefGoogle Scholar
  47. Schervish MJ (1996) P values: what they are and what they are not. Am Stat 50(3):203–206. doi: 10.2307/2684655 Google Scholar
  48. Snajdrova K, Böhm J, Willis P, Haas R, Schuh H (2006) Multitechnique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11):613–623. doi: 10.1007/s00190-005-0010-z CrossRefGoogle Scholar
  49. Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81(6–8):503–514. doi: 10.1007/s00190-006-0124-y CrossRefGoogle Scholar
  50. Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83:943–951. doi: 10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  51. Steigenberger P, Hugentobler U, Lutz S, Dach R (2011) CODE contribution to the IGS reprocessing. Technical Report, Institut für Astronomische und Physikalische Geodäsie, TU MünchenGoogle Scholar
  52. Stoew B, Rieck C (1999) Dual channel water vapour radiometer development. In: Schlüter W, Hase H (eds) Proceedings of the 13th working meeting on European VLBI for geodesy and astrometry. Bundesamt für Kartographie und Geodäsie, WettzellGoogle Scholar
  53. Teke K, Böhm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haas R, Garcia-Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85(7):395–413. doi: 10.1007/s00190-010-0434-y CrossRefGoogle Scholar
  54. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81(6–8):409–421. doi: 10.2007/s00190-006-0126-9 CrossRefGoogle Scholar
  55. Tsuboki K, Sakakibara A (2002) Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, Springer, Berlin, pp 243–259. doi: 10.1007/3-540-47847-7_21
  56. Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya J A, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Woetman Nielsen N, Ødegaard V, Rodriguez E, Rummukainen M, Rõõm R, Sattler K, Hansen Sass B, Savijärvi H, Wichers Schreur B, Sigg R, The H, Tijm A (2002) HIRLAM-5 scientific documentation, Swedish Meteorological and Hyrdological Institute, NorrköpingGoogle Scholar
  57. Urquhart L, Nievinski FG, Santos MC (2011) Ray traced slant factors for mitigating the tropospheric delay at the observation level. J Geod 86(2):149–160. doi: 10.1007/s00190-011-0503-x CrossRefGoogle Scholar
  58. Wijaya D, Böhm J, Karbon M, Schuh H (2013) Atmospheric pressure loading, In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Berlin, pp 137–157. doi: 10.1007/978-3-642-36932-2_4
  59. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):525–539. doi: 10.1007/s00190-006-0056-6 CrossRefGoogle Scholar
  60. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005: an extension of ITRF2005 for precise orbit determination. Adv Space Res 44(5):535–544. doi: 10.1016/j.asr.2009.04.018 CrossRefGoogle Scholar
  61. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010a) The International DORIS Service. Toward maturity. Adv Space Res 45(12):1408–1420. doi: 10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar
  62. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010b) Contributions of the French Institut Geographique National (IGN) to the International DORIS Service. Adv Space Res 45(12):1470–1480. doi: 10.1016/j.asr.2009.09.019 CrossRefGoogle Scholar
  63. Willis P, Bar-Sever YE, Bock O (2012a) Estimating horizontal tropospheric gradients in DORIS data processing, preliminary results. IAG Symp 136:1013–1019. doi: 10.1007/978-3-642-20338-1_127 Google Scholar
  64. Willis P, Gobinddass ML, Garayt B, Fagard H (2012b) Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. IAG Symp 136:43–49. doi: 10.1007/978-3-642-20338-1_6
  65. Yang X, Sass BH, Elgered G, Johansson JM, Emardson TR (1999) A comparison of precipitable water vapor estimates by an NWP simulation and GPS observations. J Appl Meteorol 38: 941–956Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kamil Teke
    • 1
    • 2
    Email author
  • Tobias Nilsson
    • 3
  • Johannes Böhm
    • 2
  • Thomas Hobiger
    • 4
  • Peter Steigenberger
    • 5
  • Susana García-Espada
    • 6
    • 7
  • Rüdiger Haas
    • 6
  • Pascal Willis
    • 8
    • 9
  1. 1.Department of Geomatics EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  3. 3.Section 1.1, GPS/Galileo Earth ObservationsGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Space-Time Standards GroupNational Institute of Information and Communications Technology (NICT)KoganeiJapan
  5. 5.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  6. 6.Department of Earth and Space SciencesChalmers University of Technology, Onsala Space ObservatoryOnsalaSweden
  7. 7.Instituto Geografico NacionalYebesSpain
  8. 8.Institut national de l’information géographique et forestière, Direction TechniqueSaint-MandéFrance
  9. 9.Institut de Physique du Globe de ParisUniv Paris Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations