Journal of Geodesy

, Volume 87, Issue 9, pp 843–867 | Cite as

The static gravity field model DGM-1S from GRACE and GOCE data: computation, validation and an analysis of GOCE mission’s added value

  • H. Hashemi Farahani
  • P. Ditmar
  • R. Klees
  • X. Liu
  • Q. Zhao
  • J. Guo
Original Article

Abstract

We present a global static model of the Earth’s gravity field entitled DGM-1S based on GRACE and GOCE data. The collection of used data sets includes nearly 7 years of GRACE KBR data and 10 months of GOCE gravity gradient data. The KBR data are transformed with a 3-point differentiation into quantities that are approximately inter-satellite accelerations. Gravity gradients are processed in the instrumental frame. Noise is handled with a frequency-dependent data weighting. DGM-1S is complete to spherical harmonic degree 250 with a Kaula regularization being applied above degree 179. Its performance is compared with a number of other satellite-only GRACE/GOCE models by confronting them with (i) an independent model of the oceanic mean dynamic topography, and (ii) independent KBR and gravity gradient data. The tests reveal a competitive quality for DGM-1S. Importantly, we study added value of GOCE data by comparing the performance of satellite-only GRACE/GOCE models with models produced without GOCE data: either ITG-Grace2010s or EGM2008 depending on which of the two performs better in a given region. The test executed based on independent gravity gradients quantifies this added value as 25–38 % in the continental areas poorly covered with terrestrial gravimetry data (Equatorial Africa, Himalayas, and South America), 7–17 % in those with a good coverage with these data (Australia, North America, and North Eurasia), and 14 % in the oceans. This added value is shown to be almost entirely related to coefficients below degree 200. It is shown that this gain must be entirely attributed to gravity gradients acquired by the mission. The test executed based on an independent model of the mean dynamic topography suggests that problems still seem to exist in satellite-only GRACE/GOCE models over the Pacific ocean, where noticeable deviations between these models and EGM2008 are detected, too.

Keywords

Gravity field GRACE GOCE KBR Gradiometry 

References

  1. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114:C11001. doi:10.1029/2008JC005179 CrossRefGoogle Scholar
  2. Bock H, Jäggi A, Meyer U, Visser P, van den IJssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geod 85:807–818. doi:10.1007/s00190-011-0484-9 CrossRefGoogle Scholar
  3. Bouman J, Koop R, Tscherning CC, Visser P (2004) Calibration of GOCE SGG data using high-low SST, terrestrial gravity data and global gravity field models. J Geod 78:124–137. doi:10.1007/s00190-004-0382-5 CrossRefGoogle Scholar
  4. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Proceedings of the ESA living planet symposium, 28 June–2 July 2010, Bergen, NorwayGoogle Scholar
  5. Case K, Kruizinga GLH, Wu S-C (2004) GRACE level-1B data product user handbook. Jet Propulsion Laboratory, California Institute of Technology, JPL D-22027Google Scholar
  6. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):3186. doi:10.1029/2001JC001224 CrossRefGoogle Scholar
  7. de Witte S (2011) GOCE XML parser. European Space Agency, GO-TN-HPF-GS-0192, issue 2, revision 7Google Scholar
  8. Ditmar P, Klees R (2002) A method to compute the earth’s gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft University Press (DUP Science), Delft, The NetherlandsGoogle Scholar
  9. Ditmar P, Klees R, Kostenko F (2003a) Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. J Geod 76:690–705. doi:10.1007/s00190-002-0298-x CrossRefGoogle Scholar
  10. Ditmar P, Kusche J, Klees R (2003b) Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues. J Geod 77:465–477. doi:10.1007/s00190-003-0349-y CrossRefGoogle Scholar
  11. Ditmar P, van der Sluijs AAE (2004) A technique for modeling the earth’s gravity field on the basis of satellite accelerations. J Geod 78:12–33. doi:10.1007/s00190-003-0362-1 CrossRefGoogle Scholar
  12. Ditmar P, Kuznetsov V, van der Sluijs AAE, Schrama E, Klees R (2006) DEOS_CHAMP-01C-70: a model of the earth’s gravity field computed from accelerations of the CHAMP satellite. J Geod 79:586–601. doi:10.1007/s00190-005-0008-6 Google Scholar
  13. Ditmar P, Klees R, Liu X (2007) Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. J Geod 81:81–96. doi:10.1007/s00190-006-0074-4 CrossRefGoogle Scholar
  14. Ditmar P, Teixeira da Encarnação J, Hashemi Farahani H (2012) Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod 86:441–465. doi:10.1007/s00190-011-0531-6
  15. Flechtner F (2007a) GFZ level-2 processing standards document for product release 04. GRACE 327–743, GR-GFZ-STD-001Google Scholar
  16. Flechtner F (2007b) AOD1B product description document for product releases 01 to 04. GRACE 327–750, GR-GFZ-AOD-0001Google Scholar
  17. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85:749–758. doi:10.1007/s00190-011-0498-3 CrossRefGoogle Scholar
  18. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abs, 10, EGU2008-A-03426Google Scholar
  19. Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrikosov O, Dahle C, Lemoine J-M, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abs, 13, EGU2011-3242-2 (http://icgem.gfz-potsdam.de/ICGEM/documents/Foerste-et-al-EGU_2011-01.pdf)
  20. Goiginger H, Höck E, Rieser D, Mayer-Gürr T, Maier A, Krauss S, Pail R, Fecher T, Gruber T, Brockmann JM, Krasbutter I, Schuh W-D, Jäggi A, Prange L, Hausleitner W, Baur O, Kusche J (2011) The combined satellite-only global gravity field model GOCO02S. Geophys Res Abs, 13, EGU2011-10571 (http://www.goco.eu)Google Scholar
  21. Gruber T, Rummel R, Abrikosov O, van Hees R (2010) GOCE level 2 product data handbook. European Space Agency, GO-MA-HPF-GS-0110, issue 4, revision 3Google Scholar
  22. Gruber T, Visser P, Ackermannm Ch, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85:845–860. doi:10.1007/s00190-011-0486-7 CrossRefGoogle Scholar
  23. Hashemi Farahani H, Ditmar P, Klees R, Teixeira da Encarnação J, Liu X, Zhao Q, Guo J (2013) Validation of static gravity field models using GRACE K-band ranging and GOCE gradiometry data. Geophys J Int. doi:10.1093/gji/ggt149 Google Scholar
  24. Horwath M, Lemoine J-M, Biancale R, Bourgogne S (2011) Improved GRACE science results after adjustment of geometric biases in the level-1B K-band ranging data. J Geod 85:23–38. doi:10.1007/s00190-010-0414-2 CrossRefGoogle Scholar
  25. Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2012) AIUB-GRACE02S-status of GRACE gravity field recovery using the celestial mechanics approach. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, vol 136, pp 161–170, ISBN: 978-3-642-20337-4, doi:10.1007/978-3-642-20338-1_20
  26. Kim J (2000) Simulation study of a low–low satellite-to-satellite tracking mission. PhD thesis, Center for Space Research, The University of Texas at Austin, Texas, USAGoogle Scholar
  27. Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large least-squares problems. J Geod 76:629–640. doi:10.1007/s00190-002-0291-4 CrossRefGoogle Scholar
  28. Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise GRACE baseline determination using GPS. GPS Solut 9:21–31. doi:10.1007/s10291-004-0123-5 CrossRefGoogle Scholar
  29. Liu X (2008) Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. PhD thesis, Delft University of Technology, Delft, The Netherlands (http://www.ncg.knaw.nl/Publicaties/Geodesy/68Liu.html)
  30. Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181:769–788. doi:10.1111/j.1365-246X.2010.04533.x CrossRefGoogle Scholar
  31. Losch M, Sloyan BM, Schröter J, Sneeuw N (2002) Box inverse models, altimetry and the geoid: problems with the omission error. J Geophys Res 107:3078. doi:10.1029/2001JC000855 CrossRefGoogle Scholar
  32. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insides from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  33. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. PhD thesis, University of Bonn, Bonn, GermanyGoogle Scholar
  34. Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K-H (2010) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner F et al. (eds) System earth via geodetic-geophysical space techniques, Springer, New York, pp 159–168. doi:10.1007/978-3-642-10228-8_13
  35. Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03S. Presented at international symposium on gravity, geoid and height systems (GGHS) 2012, Venice, Italy (http://www.goco.eu)
  36. McCarthy DD, Petit G (2004) IERS conventions (2003) IERS technical note 32. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  37. Migliaccio F, Reguzzoni M, Gatti A, Sansò F, Herceg M (2011) A GOCE-only global gravity field model by the space-wise approach. In: Proceedings of the 4th international GOCE user workshop, 31 Mar–1 Apr 2011, Munich, GermanyGoogle Scholar
  38. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906
  39. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi:10.1007/s00190-011-0467-x Google Scholar
  40. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res. doi:10.1029/2011JB008916
  41. Rio M-H, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi:10.1029/2010JC006505 CrossRefGoogle Scholar
  42. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790. doi:10.1007/s00190-011-0500-0 Google Scholar
  43. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411. doi:10.1029/2008JB006008
  44. Siemes C, Haagmans R, Kern M, Plank G, Floberghagen R (2012) Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: methodology and first results. J Geod 86:629–645. doi:10.1007/s00190-012-0545-8 CrossRefGoogle Scholar
  45. Slobbe DC, Simons FJ, Klees R (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid. J Geod 86:609–628. doi:10.1007/s00190-012-0543-x Google Scholar
  46. Smith DA (1998) There is no such thing as “The” EGM96 geoid: subtle points on the use of a global geopotential model. IGeS Bulletin No. 8, International Geoid Service, Milan, Italy, pp 17–28Google Scholar
  47. Standish EM (1998) JPL planetary and lunar ephemerides, DE405/LE405. Jet Propulsion Labratoary, IOM 312.F-98-048Google Scholar
  48. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  49. Tapley BD, Ries JC, Bettadpur S, Chambers DP, Cheng MK, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved earth gravity field model from GRACE. J Geod 79:467–478. doi:10.1007/s00190-005-0480-z CrossRefGoogle Scholar
  50. van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71:337–343. doi:10.1007/s001900050101 CrossRefGoogle Scholar
  51. Zhao Q (2004) Research on precise orbit determination theory and software for both GPS navigation constellation and LEO satellites. PhD Thesis, Wuhan University, Wuhan, China (only abstract in English).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Hashemi Farahani
    • 1
  • P. Ditmar
    • 1
  • R. Klees
    • 1
  • X. Liu
    • 1
    • 2
  • Q. Zhao
    • 3
  • J. Guo
    • 3
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Fugro Intersite B.V.LeidschendamThe Netherlands
  3. 3.GNSS Research CenterWuhan UniversityWuhanChina

Personalised recommendations