Journal of Geodesy

, Volume 87, Issue 9, pp 813–823 | Cite as

A technique for routinely updating the ITU-R database using radio occultation electron density profiles

  • Claudio Brunini
  • Francisco Azpilicueta
  • Bruno Nava
Original Article


Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,\(N_m \mathrm{F2}\), and the height, \(h_m \mathrm{F2}\). Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve \(N_m \mathrm{F2}\) and \(h_m \mathrm{F2}\) values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between \(0.5\times 10^{10}\) and \(3.6\times 10^{10}\) elec/m\(^{-3}\) for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (\(\sim \)2 %).


Ionosphere F2-peak parameters ITU-R maps updating International Reference Ionosphere (IRI) NeQuick  Radio-occultation 


  1. Altinay O, Tulunay E, Tulunay Y (1997) Forecasting of ionospheric critical frequency using neural networks. Geophys Res Lett 24: 1467–1470CrossRefGoogle Scholar
  2. Angling MJ (2008) First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM). Ann Geophys 26:353–359. doi:10.5194/angeo-26-353-2008 CrossRefGoogle Scholar
  3. Anthes RA, Bernhardt PA, Chen Y, Cucurul L, Dymond KF, Ector D, Healy SB, Ho S-P, Hunt DC, Kuo Y-H, Liu H, Manning K, Mccormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson D, Trenberth KE, Wee T-K, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT 3 mission–early results. Bull Am Meteorol Soc March 89:313–333Google Scholar
  4. Azpilicueta F, Brunini C (2008) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geod. doi:10.1007/s00190-008-0244-7 Google Scholar
  5. Bilitza D (2001) International reference ionosphere 2000. Radiol Sci 36(2):261–275CrossRefGoogle Scholar
  6. Bilitza D (2002) Ionospheric models for radio propagation studies. In: Review of radio science 1999–2002. Oxford University Press, NY, pp 625–679Google Scholar
  7. Bilitza D, Brown S, Wang MY, Souza JR, Roddy PA (2012) Measurements and IRI model predictions during the recent solar minimum. J Atmos Solar Terr Phys 86:99–106. doi:10.1016/j.jastp.2012.06.010 CrossRefGoogle Scholar
  8. Bilitza D, Sheikh M, Eyfrig R (1979) A global model for the height of the F2-peak using M3000 values from the CCIR numerical map. Telecomm J 46(9):549–553Google Scholar
  9. Bradley PA, Dudeney JR (1973) A simple model of the vertical distribution of electron concentration in the ionosphere. J Atmos Solar Terr Phys 35(12):2131–2146CrossRefGoogle Scholar
  10. Brunini C, Azpilicueta F, Gende M, Camilion E, Aragón Ángel A, Hernandez-Pajares M, Juan M, Sanz J, Salazar D (2011) Ground- and space-based GPS data ingestion into the NeQuick model. J Geod. doi:10.1007/s00190-011-0452-4 Google Scholar
  11. Brunini C, Azpilicueta F, Gende M, Camilion E, Gularte E (2013a) Improving SIRGAS ionospheric model. In: International Association of Geodesy symposia, vol 138, pp 245–250 (in press)Google Scholar
  12. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX and GPS derived TEC. J Geod 79:175–188. doi:10.1007/s00190-005-0448-z CrossRefGoogle Scholar
  13. Bruninia C, Conte JF, Azpilicueta F, Bilitza D (2013b) A different method to determine the height of the F2 peak. Adv Space Res (in press)Google Scholar
  14. CCIR (1991) Report 340–6. Comité Consultatif International des Radio communications, Genève, SwitzerlandGoogle Scholar
  15. Cheng C-Z, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. Eos Trans Am Geophys Union 87:166–167CrossRefGoogle Scholar
  16. Codrescu MV, Beierle KL, Fuller-Rowell TJ (2001) More total electron content climatology from TOPEX/Poseidon measurements. Radio Sci 36(2):325–333CrossRefGoogle Scholar
  17. Delay S, Doherty P (2004) A decade of ionospheric measurements from the TOPEX/Poseidon mission, contribution to the International Beacon Satellite Symposium, Trieste, October 18th-22ndGoogle Scholar
  18. Dudeney JR (1975) A simple empirical method for estimating the height and semi-thickness of the F2-layer at the Argentine Islands Graham Land. British Antarctic Survey, Science Report No 88, LondonGoogle Scholar
  19. Eyfrig R (1973) Eine Bemerkung zur Bradley–Dudeney’schen Modell-Ionosphäre. Kleinheubacher Berichte 17:199–202Google Scholar
  20. Fan H (2010) Theory of errors and least squares adjustment. Royal Institute of Technology, Division of Geodesy and Geoinformatics, 100 44 Stockholm, Sweden. ISBN 91-7170-200-8Google Scholar
  21. Fox MW, McNamara LF (1988) Improved world-wide maps of monthly median of foF2. J Atmos Terr Phys 50:1077–1086CrossRefGoogle Scholar
  22. Gulyaeva TL, Bradley PA, Stanislawska I, Juchnikowski G (2008) Towards a new reference model of hmF2 for IRI. Adv Space Res 42:666–672. doi:10.1016/j.asr.2008.02.021 CrossRefGoogle Scholar
  23. Hernandez-Pajares M (2003) Performance of IGS Ionosphere TEC maps. Presented at 22nd IGS Governing Board Meeting, Nice, 6th AprilGoogle Scholar
  24. Hoque MM, Jakowski N (2011) A new global empirical NmF2 model for operational use in radio systems. Radio Sci 46:RS6015. doi:10.1029/2011RS004807
  25. Hoque MM, Jakowski N (2012) A new global model for the ionospheric F2 peak height for radio wave propagation. Ann Geophys. doi:10.5194/angeo-30-797-2012 Google Scholar
  26. Huber PJ (1981) Robust Statistics. Wiley, LondonCrossRefGoogle Scholar
  27. ITU-R (1997) Recommendation ITU-R P 1239. ITU-R reference ionospheric characteristics, International Telecommunications Union, Radio Communication Sector, GenevaGoogle Scholar
  28. Jakowski N, Leitinger R, Angling M (2004) Radio occultation techniques for probing the ionosphere. Ann Geophys 47:1049–1066Google Scholar
  29. Jones WB, Gallet RM (1962) Representation of diurnal and geographical variations of ionospheric data by numerical methods. ITU Telecomm J 29(5):129–149Google Scholar
  30. Jones WB, Gallet RM (1965) Representation of diurnal and geographical variations of ionospheric data by numerical methods, II. Control of Stability. ITU Telecomm J 32(1):18–28 Google Scholar
  31. Jones WB, Obitts DL (1970) Global representation of annual and solar cycle variations of foF2 monthly median 1954–1958. Telecommunications Research Report, OT/ITS/RR3, Washington DC, USA, US Government Printing OfficeGoogle Scholar
  32. Kuo Y-H, Wee T-K, Sokolovskiy S, Rocken C, Schreiner W, Hunt D, Anthes RA (2004) Inversion and error estimation of GPS radio occultation data. J Meteor Soc Japan 82:507–531CrossRefGoogle Scholar
  33. Liu C, Zhang M-L, Wan W, Liu L, Ning B (2008) Modeling M(3000)F2 based on empirical orthogonal function analysis method. Radio Sci 43:RS1003. doi:10.1029/2007RS003694
  34. Meza A, Gularte Scarone E, Brunini C, Mosert M (2008) Analysis of a topside ionospheric model using GPS and ionosonde observables. Adv Space Res 42:712–719. doi:10.1016/j.asr.2007.08.042 CrossRefGoogle Scholar
  35. Nava B, Coïsson P, Radicella SM (2008) A New version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys, pp 1856–1862. doi:10.1016/j.jastp.2008.01.015
  36. Obrou OK, Bilitza D, Adeniyi JO, Radicella SM (2003) Equatorial F2-layer peak height and correlation with vertical ion drift and M(3000)F2. Adv Space Res 31(3):513–520CrossRefGoogle Scholar
  37. Oyeyemi EO, Poole AWV, McKinnell LA (2005) On the global model for foF2 using neural networks. Radio Sci 40:RS6011. doi:10.1029/2004RS003223
  38. Rawer K (ed) (1984) Encyclopedia of physics. Geophysics III, Part VII. Springer, Berlin, pp 389–391Google Scholar
  39. Rawer K, Eyfrig R (2004) Improving the M(3000)-\(h_M \)F2 relation. Adv Space Res 33:878–879CrossRefGoogle Scholar
  40. Reinisch BW, Huang X (2001) Deducing topside profiles and total electron content from bottomside ionograms. Adv Space Res 27(1): 23–30CrossRefGoogle Scholar
  41. Rush C, Fox M, Bilitza D, Davies K, McNamara L, Stewart F, PoKempner M (1989) Ionospheric mapping—an update of foF2 coefficients. Telecomm J 56:179–182Google Scholar
  42. Rush CM, Pokempner M, Anderson DN, Stewart FG, Perry J (1984) Maps of foF2 derived from observations and theoretical data. Radio Sci 19:1083–1097CrossRefGoogle Scholar
  43. Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. doi:10.1029/2006GL027557 CrossRefGoogle Scholar
  44. Shimazaki T (1955) World-wide daily variation in the height of the maximum electron density of the ionospheric F2-layer. J Radiol Res Lab 2(7):85–97Google Scholar
  45. Weisberg S (1980) Applied linear regression. Wiley, New YorkGoogle Scholar
  46. Wintoft P, Cander LJR (1999) Short-term prediction of foF2 using time delay neural networks. Phys Chem Earth(c) 24:343–347Google Scholar
  47. Wright JW, Mcduffie RE (1960) The relation of \(h_M \)F2 to M(3000)F2 and \(h_p \)F2. J Radio Res Lab (Tokyo) 7(32):498–520Google Scholar
  48. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo Y-H (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28:217–222. doi:10.5194/angeo-28-217-2010 CrossRefGoogle Scholar
  49. Yunck TP, Liu C-H, Ware R (2000) A history of GPS sounding. Terr Atmos Oceanic Sci 11:1–20Google Scholar
  50. Zhang M-L, Liu C, Wan W, Liu L, Ning B (2009) A global model of the ionospheric F2 peak height based on EOF analysis. Ann Geophys 27:3203–3212. doi:10.5194/angeo-27-3203-2009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudio Brunini
    • 1
    • 2
  • Francisco Azpilicueta
    • 2
    • 1
  • Bruno Nava
    • 3
  1. 1.GESA, Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasLa PlataArgentina
  3. 3.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations