Journal of Geodesy

, Volume 87, Issue 6, pp 515–525 | Cite as

Orbit and clock analysis of Compass GEO and IGSO satellites

  • P. SteigenbergerEmail author
  • U. Hugentobler
  • A. Hauschild
  • O. Montenbruck
Original Article


China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1–2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.


GNSS BeiDou-2 Satellite orbits  Allan deviation 



We would like to thank the station operators Shinichi Nakamura (Japan Aerospace Exploration Agency), Noor Raziq (Curtin University, Australia), and Renat Zagretdinov (Kazan Federal University, Russia) for their support. The efforts of the IGS M-GEX campaign (Weber 2012) in providing multi-GNSS data are acknowledged. CHN0 tracking data were kindly provided by Trimble.


  1. Bar-Sever Y (1996) A new model for GPS yaw attitude. J Geod 70(1):714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  2. Becker M, Zeimetz P, Schönemann E (2010) Antenna chamber calibrations and antenna phase center variations for new and existing GNSS signals. In: IGS workshop 2010, 28 June–2 July 2010, NewcastleGoogle Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Man Geod 19:367–386Google Scholar
  4. Chen H, Huang Y, Chiang K, Yang M, Rau R (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin Inst Eng 32(5):679–689CrossRefGoogle Scholar
  5. China Satellite Navigation Office (2011) BeiDou Navigation Satellite System signal. In: Space interface control document (test version). Technical report.
  6. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  7. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  8. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Dragon in Space (2012). Accessed 04–09–2012
  10. Flohrer T, Choc R, Bastida B (2011) Classification of geosynchronous objects. Issue 13. European Space Agency, Space Debris Office, GEN-DB-LOG-00074-OPS-GRGoogle Scholar
  11. Gao GX, Chen A, Lo S, Lorenzo DD, Walter T, Enge P (2009) Compass-M1 broadcast codes in E2, E5b, and E6 frequency bands. IEEE J Sel Top Signal Process 3(4):599–612. doi: 10.1109/JSTSP.2009.2025635 Google Scholar
  12. Gao Z, Zhang H, Hu Z, Peng J (2012) Performance analysis of BeiDou Satellite Navigation System (4IGSO + 3GEO) in standard positioning and navigation. In: China satellite navigation conference (CSNC) 2012 proceedings. Lecture notes in electrical engineering, vol 159. Springer, pp 177–186. doi: 10.1007/978-3-642-29187-6_17
  13. Ge M, Zhang H, Jia X, Song S, Wickert J (2012) What is achievable with current COMPASS constellation? In: ION GNSS 2012Google Scholar
  14. Gong H, Yang W, Wang Y, Zhu X, Wang F (2012) Comparison of short-term stability estimation methods of GNSS on-board clock. In: Sun J, Liu J, Yang Y, Fan S (eds) China satellite navigation conference (CSNC) 2012 proceedings. Lecture notes in electrical engineering, vol 160. Springer, pp 503–513. doi: 10.1007/978-3-642-29175-3_46
  15. Gurtner W, Estey L (2009) RINEX, the receiver independent exchange format, Version 3.01. Technical report.
  16. Han C, Yang Y, Cai Z (2011) BeiDou Navigation Satellite System and its time scales. Metrologia 48(4):S213–S218. doi: 10.1088/0026-1394/48/4/S13 CrossRefGoogle Scholar
  17. Hauschild A, Steigenberger P (2012) Combined GPS and GALILEO real-time clock estimation with DLRs RETICLE system. In: ION GNSS 2012Google Scholar
  18. Hauschild A, Montenbruck O, Sleewaegen J, Huisman L, Teunissen P (2012a) Characterization of Compass M-1 signals. GPS Sol 16(1):117–126. doi: 10.1007/s10291-011-0210-3 CrossRefGoogle Scholar
  19. Hauschild A, Montenbruck O, Steigenberger P (2012b) Short-term analysis of GNSS clocks. GPS Sol. doi: 10.1007/s10291-012-0278-4
  20. Jun X, Jingang W, Hong M (2012) Analysis of Beidou Navigation Satellites in-orbit state. In: China satellite navigation conference (CSNC) 2012 proceedings. Lecture notes in electrical engineering, vol 161. Springer, pp 111–122. doi: 10.1007/978-3-642-29193-7_10
  21. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415. doi: 10.1007/s10236-006-0086-x Google Scholar
  22. McCarthy DD, Petit G (2004) IERS conventions (2003) IERS technical note 32. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  23. Montenbruck O (2009) Orbital mechanics. In: Ley W, Wittmann K, Hallmann W (eds) Handbook of space technology. Wiley, West Sussex, UK, pp. 52–82. doi: 10.1002/9780470742433
  24. Montenbruck O, Hauschild A, Hessels U (2010) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Sol 15(3):193–205. doi: 10.1007/s10291-010-0182-8 CrossRefGoogle Scholar
  25. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2012) Initial assessment of the COMPASS/BeiDou-2 Regional Navigation Satellite System. GPS Sol. doi: 10.1007/s10291-012-0272-x
  26. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  27. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):125–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  28. Qian S, Jun Z, Yanbo Z (2012) China Compass PNT service architecture and outlook. In: ION ITM 2012, pp 848–854Google Scholar
  29. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Sol 16(4): 483–494. doi: 10.1007/s10291-011-0248-2 Google Scholar
  30. Riley S (2012) Personal communicationGoogle Scholar
  31. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086. doi: 10.1007/s11430-012-4446-8 CrossRefGoogle Scholar
  32. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Sol 17(1):103–119. doi: 10.1007/s10291-012-0264-x
  33. Soop E (1994) Handbook of geostationary orbits. Kluwer, Dordrecht. ISBN: 0-7923-3054-4Google Scholar
  34. Steigenberger P, Hugentobler U, Montenbruck O, Hauschild A (2011) Precise orbit determination of GIOVE-B based on the CONGO network. J Geod 85(6):357–365. doi: 10.1007/s00190-011-0443-5 CrossRefGoogle Scholar
  35. Steigenberger P, Hauschild A, Montenbruck O, Rodriguez-Solano C, Hugentobler U (2012) Orbit and clock determination of QZS-1 based on the CONGO network. In: ION ITM 2012, pp 1265–1274Google Scholar
  36. Svehla D, Heinze M, Rothacher M, Steigenberger P, Dähnn M, Kirchner M (2008) Combined processing of GIOVE-A and GPS measurements using zero- and double-differences. Geophysical Research Abstracts 10, sRef-ID: 1607–7962/gra/EGU2008-A-11383Google Scholar
  37. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36(3):412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  38. Weber R (2012) IGS GNSS Working Group. In: Meindl M, Dach R, Jean Y (eds) International GNSS Service technical report 2011. Jet Propulsion Laboratory, Pasadena, pp 159–163Google Scholar
  39. Weiguang G (2011a) ILRS SLR mission support request for Compass-G1.
  40. Weiguang G (2011b) ILRS SLR mission support request for Compass-I3.
  41. Withers DJ (1999) Radio spectrum management. Institution of Engineering and TechnologyGoogle Scholar
  42. Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Steigenberger
    • 1
    Email author
  • U. Hugentobler
    • 1
  • A. Hauschild
    • 2
  • O. Montenbruck
    • 2
  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchenGermany
  2. 2.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany

Personalised recommendations