Journal of Geodesy

, Volume 87, Issue 6, pp 505–514 | Cite as

Impact of seasonal station motions on VLBI UT1 intensives results

Original Paper


UT1 estimates obtained from the very long baseline interferometry (VLBI) Intensives data depend on the station displacement model used during processing. In particular, because of seasonal variations, the instantaneous station position during the specific intensive session differs from the position predicted by the linear model generally used. This can cause systematic errors in UT1 Intensives results. In this paper, we first investigated the seasonal signal in the station displacements for the 5 VLBI antennas participating in UT1 Intensives observing programs, along with the 8 collocated GPS stations. It was found that a significant annual term is present in the time series for most stations, and its amplitude can reach 8 mm in the height component, and 2 mm in horizontal components. However, the annual signals found in the displacements of the collocated VLBI and GPS stations at some sites differ substantially in amplitude and phase. The semiannual harmonics are relatively small and unstable, and for most stations no prevailing signal was found in the corresponding frequency band. Then two UT1 Intensives series were computed with and without including the seasonal term found in the previous step in the station movement model. Comparison of these series has shown that neglecting the seasonal station position variations can cause a systematic error in UT1 estimates, which can exceed 1 \(\upmu \)s, depending on the observing program.


VLBI IVS GPS IGS Earth orientation parameters (EOP) UT1 intensives 



The author is grateful to Manuela Seitz (DGFI) and Peng Fang (SOPAC) for help in obtaining and discussing the GPS station position time series used for validation of the results of this work. The author thank the anonymous reviewers for careful reading the manuscript and useful and constructive reports. This paper is based on processing of VLBI observations collected on the international IVS network ( The hard work of the many people that makes this data available is highly appreciated.


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Metivier L, Rebischung P (2012) Strengths and weaknesses of the IGS contribution to the ITRF. IGS Workshop, Olsztyn, July 2012. http://wwwigsorg/assets/pdf/Poland 2012–P10 Altamimi PR46pdf
  3. Baver K, Gipson J (2010) Strategies for Improving the IVS-INT01 UT1 Estimates. In: Behrend D, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings. NASA/CP-2010-215864, pp 256–260Google Scholar
  4. Baver K, MacMillan D, Petrov L, Gordon D (2004) Analysis of the VLBI intensive sessions. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, pp 394–398Google Scholar
  5. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294:2342–2345. doi: 10.1126/science.1065328 CrossRefGoogle Scholar
  6. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res (Solid Earth) 112:B12403. doi: 10.1029/2007JB004933 CrossRefGoogle Scholar
  7. Ding XL, Zheng DW, Dong DN, Ma C, Chen YQ, Wang GL (2005) Seasonal and secular positional variations at eight co-located GPS and VLBI stations. J Geod 79:71–81. doi: 10.1007/s00190-005-0444-3 CrossRefGoogle Scholar
  8. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res (Solid Earth) 107:2075. doi: 10.1029/2001JB000573 CrossRefGoogle Scholar
  9. Flouzat M, Bettinelli P, Willis P, Avouac JP, Héritier T, Gautam U (2009) Investigating tropospheric effects and seasonal position variations in GPS and DORIS time-series from the Nepal Himalaya. Geophys J Int 178:1246–1259. doi: 10.1111/j.1365-246X.2009.04252.x CrossRefGoogle Scholar
  10. Gambis D, Luzum B (2011) Earth rotation monitoring, UT1 determination and prediction. Metrologia 48:165. doi: 10.1088/0026-1394/48/4/S06 CrossRefGoogle Scholar
  11. Hefty J, Gontier AM (1997) Sensitivity of UT1 determined by single-baseline VLBI to atmospheric delay model, terrestrial and celestial reference frames. J Geod 71:253–261. doi: 10.1007/s001900050093 CrossRefGoogle Scholar
  12. Hugentobler U, Angermann D, Drewes H, Gerstl M, Seitz M, Steigenberger P (2010) Standards and conventions relevant for the ITRF. IAG Commission 1 Symposium REFAG2010, Marne la Vallée, 4–8 Oct 2010 http://iagignfr/abstract/pdf/Hugentobler_REFAG2010pdf
  13. Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res (Solid Earth) 102:591–604. doi: 10.1029/96JB02945 CrossRefGoogle Scholar
  14. MacMillan D, Boy JP (2004) Mass loading effects on crustal displacements measured by VLBI. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, pp 476–480Google Scholar
  15. Malkin ZM, Voinov AV (2001) Preliminary results of processing EUREF network observations using a non-fiducial strategy. Phys Chem Earth 26:579–583. doi: 10.1016/S1464-1895(01)00104-1 CrossRefGoogle Scholar
  16. Malkin ZM (2007) Empiric models of the Earth’s free core nutation. Sol Syst Res 41:492–497. doi: 10.1134/S0038094607060044 CrossRefGoogle Scholar
  17. Malkin ZM (2011a) Study of astronomical and geodetic series using the Allan variance. KPCB 27:42–49. doi: 10.3103/S0884591311010053 Google Scholar
  18. Malkin Z, Schuh H, Ma C, Lambert S (2012) Interaction between celestial and terrestrial reference frames and some considerations for the next VLBI-based ICRF. In: Schuh H, Böhm S, Nilsson T, Capitaine N (eds) Proceedings of Journées 2011: Earth rotation, reference systems and celestial mechanics: synergies of geodesy and astronomy, Vienna, 19–21 Sep 2011, pp 66–69Google Scholar
  19. Malkin Z (2008) On the accuracy assessment of celestial reference frame realizations. J Geod 82:325–329. doi: 10.1007/s00190-007-0181-x CrossRefGoogle Scholar
  20. Malkin Z (2009) On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J Geod 83:547–556. doi: 10.1007/s00190-008-0265-2 CrossRefGoogle Scholar
  21. Malkin Z (2010a) CPO prediction: accuracy assessment and impact on UT1 intensive results. In: Behrend D, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proc., NASA/CP-2010-215864, pp 261–265Google Scholar
  22. Malkin Z (2010b) Terrestrial and celestial reference frames: synergy and mutual impact. In: IAG Commission 1 Symposium REFAG2010, Marne la Vallée, 4–8 Oct 2010. http://iagignfr/abstract/pdf/Malkin_REFAG2010pdf
  23. Malkin Z (2011b) The impact of celestial pole offset modelling on VLBI UT1 intensive results. J Geod 85:617–622. doi: 10.1007/s00190-011-0468-9 CrossRefGoogle Scholar
  24. Malkin Z (2013) Using modified Allan variance for time series analysis. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. IAG Sympoisa 138:255–260. doi: 10.1007/978-3-642-32998-2_39
  25. Ma C, Arias EF, Bianco G, Boboltz DA, Bolotin SL, Charlot P, Engelhardt G, Fey AL, Gaume RA, Gontier AM, Heinkelmann R, Jacobs CS, Kurdubov S, Lambert SB, Malkin ZM, Nothnagel A, Petrov L, Skurikhina E, Sokolova JR, Souchay J, Sovers OJ, Tesmer V, Titov OA, Wang G, Zharov VE, Barache C, Boeckmann S, Collioud A, Gipson JM, Gordon D, Lytvyn SO, MacMillan DS, Ojha R (2009) The second realization of the international celestial reference frame by very long baseline interferometry. In: Fey AL, Gordon D, Jacobs CS (eds) IERS Technical Note No 35. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  26. Munekane H, Tobita M, Takashima K (2004) Groundwater-induced vertical movements observed in Tsukuba, Japan. Geophys Res Lett 31:L12608. doi: 10.1029/2004GL020158 CrossRefGoogle Scholar
  27. Munekane H, Kuroishi Y, Hatanaka Y, Takashima K, Ishimoto M (2010) Groundwater-induced vertical movements in Tsukuba revisited: installation of a new GPS station. EPS 62:711–715. doi: 10.5047/eps.2010.08.001 Google Scholar
  28. Nikolaidis R (2002) Observation of geodetic and seismic deformation with the global positioning system. PhD thesis, University of California, San DiegoGoogle Scholar
  29. Nothnagel A, Schnell D (2008) The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations. J Geod 82:863–869. doi: 10.1007/s00190-008-0212-2 CrossRefGoogle Scholar
  30. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83:787–792. doi: 10.1007/s00190-008-0284-z CrossRefGoogle Scholar
  31. Petit G, Luzum B (eds) (2010) IERS conventions (2010). IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  32. Petrachenko B, Niell A, Behrend D, Corey B, Boehm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system. Progress Report of the IVS VLBI2010 Committee, NASA/TM-2009-214180, June 2009Google Scholar
  33. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res (Solid Earth) 109:B03405. doi: 10.1029/2003JB002500 CrossRefGoogle Scholar
  34. Petrov L, Ma C (2003) Study of harmonic site position variations determined by very long baseline interferometry. J Geophys Res (Solid Earth) 108:2190. doi: 10.1029/2002JB001801
  35. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81:379–387. doi: 10.1007/s00190-006-0131-z Google Scholar
  36. Schnell D (2006) Quality aspects of short duration VLBI observations for UT1 determinations. Dissertation, Institut für Geodäsie und Geoinformation, Universität Bonn, Bonn.
  37. Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83:973–988. doi: 10.1007/s00190-009-0316-3 CrossRefGoogle Scholar
  38. Titov OA, Yakovleva HG (2000) Seasonal variations in radial components of VLBI stations. Astron Astrophys Trans 18:591–603. doi: 10.1080/10556790008208164 CrossRefGoogle Scholar
  39. Titov O (2000) Influence of adopted nutation model on VLBI NEOS-intensives data analysis. In: Johnston KJ, McCarthy DD, Luzum BJ, Kaplan GH (eds) IAU Colloq. 180: Towards models and constants for sub-microarcsecond astrometry. U.S. Naval Observatory, Washington, DC, p 259Google Scholar
  40. van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28:651–654. doi: 10.1029/2000GL012120 CrossRefGoogle Scholar
  41. van Dam T, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Nontidal ocean loading: amplitudes and potential effects in GPS height time series. J Geod 86:1043–1057. doi: 10.1007/s00190-012-0564-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Pulkovo ObservatorySt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations