Journal of Geodesy

, Volume 87, Issue 5, pp 439–448 | Cite as

Global empirical model for mapping zenith wet delays onto precipitable water

  • Yi Bin Yao
  • Bao Zhang
  • Shun Qiang Yue
  • Chao Qian Xu
  • Wen Fei Peng
Original Article

Abstract

We can map zenith wet delays onto precipitable water with a conversion factor, but in order to calculate the exact conversion factor, we must precisely calculate its key variable \(T_\mathrm{m}\). Yao et al. (J Geod 86:1125–1135, 2012. doi:10.1007/s00190-012-0568-1) established the first generation of global \(T_\mathrm{m}\) model (GTm-I) with ground-based radiosonde data, but due to the lack of radiosonde data at sea, the model appears to be abnormal in some areas. Given that sea surface temperature varies less than that on land, and the GPT model and the Bevis \(T_\mathrm{m}\)\(T_\mathrm{s}\) relationship are accurate enough to describe the surface temperature and \(T_\mathrm{m}\), this paper capitalizes on the GPT model and the Bevis \(T_\mathrm{m}\)\(T_\mathrm{s}\) relationship to provide simulated \(T_\mathrm{m}\) at sea, as a compensation for the lack of data. Combined with the \(T_\mathrm{m}\) from radiosonde data, we recalculated the GTm model coefficients. The results show that this method not only improves the accuracy of the GTm model significantly at sea but also improves that on land, making the GTm model more stable and practically applicable.

Keywords

GPS meteorology Zenith wet delay Precipitable water 

List of abbreviations

COSMIC

Constellation Observation System of Meteorology, Ionosphere, and Climate

GPS

Global Positioning System

GPT

Global Pressure and Temperature

GTm

Global \(T_\mathrm{m}\) model

GNSS

Global Navigation Satellite System

ECMWF

European Centre for Medium-Range Weather Forecasts

IGRA

Integrated Global Radiosonde Archive

MAE

Mean Absolute Error

PWV

Precipitable Water Vapor

RMS

Root Mean Square

ZWD

Zenith Wet Delay

Supplementary material

190_2013_617_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (docx 24 KB)

References

  1. Bevis M, Businger S, Chiswell S et al (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386CrossRefGoogle Scholar
  2. Bevis M, Businger S, Herring AT, et al. (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14):15787–15801Google Scholar
  3. Boehm J, Heinkelmann R, Schuh H (2007) Short Note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683CrossRefGoogle Scholar
  4. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607CrossRefGoogle Scholar
  5. Ding JC (2009) GPS meteorology and its applications. China Meteorological Press, Beijing, pp 1–10Google Scholar
  6. Gu XP (2004) Research on retrieval of GPS water vapor and method of rainfall forecast. Doctorial dissertation, China Agricultural University pp 1–15Google Scholar
  7. Gu XP, Wang CY, Wu DX (2005) Research on the local algorithm for weighted atmospheric temperature used in GPS remote sensing water vapor. Sci Metero Sin 25(1):79–83Google Scholar
  8. Kursinski ER, Syndergaard S, Flittner D et al (2002) A microwave occultation observing system optimized to characterize atmospheric water, temperature, and geopotential via absorption. J Atmos Oceanic Technol 19:1897–1914CrossRefGoogle Scholar
  9. Li JG, Mao JT, Li CC (1999) The approach to remote sensing of water vapor based on GPS and linear regression $T_m$ in eastern region of China. Acta Meteor Sin 57(3):283–292Google Scholar
  10. Li GP, Huang GF, Liu BQ (2006) Experiment on driving precipitable water vapor form ground-based GPS network in Chengdu Plain. Geomat Inf Sci 31(12):1086–1089Google Scholar
  11. Lv YP, Yin HT, Huang DF (2008) Modeling of weighted mean atmospheric temperature and application in GPS/PWV of Chengdu region. Sci Survey Mapp 33(4):103–105Google Scholar
  12. Liu YX, Chen YQ, Liu JN (2000) Determination of weighted mean tropospheric temperature using ground meteorological measurement. J Wuhan Techn Univ Survey Mapp 25(5):400–403Google Scholar
  13. Mao JT (2006) Research of remote sensing of atmospheric water vapor using Global Positioning System (GPS). Doctorial dissertation, Beijing University pp 1–5Google Scholar
  14. Rocken C, Ware R, Van Hove T, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20(23):2631–2634. doi:10.1029/93GL02935 CrossRefGoogle Scholar
  15. Ross RJ, Rosenfeld S (1997) Estimating mean weighted temperature of the atmosphere for Global Positioning System. J Geophys Res 102(18):21719–21730CrossRefGoogle Scholar
  16. Wang Y, Liu LT, Hao XG et al (2007) The application study of the GPS meteorology network in wuhan region. Acta Geodaet Cartogr Sinica 36(2):141–145Google Scholar
  17. Yao YB, Zhu S, Yue SQ (2012) A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J Geod 86:1125–1135. doi:10.1007/s00190-012-0568-1 Google Scholar
  18. Yu SJ (2011) Remote sensing of water vapor based on Ground GPS observations. Doctor thesis, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, pp 37–50Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yi Bin Yao
    • 1
  • Bao Zhang
    • 1
  • Shun Qiang Yue
    • 1
  • Chao Qian Xu
    • 1
  • Wen Fei Peng
    • 1
  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina

Personalised recommendations