Journal of Geodesy

, Volume 87, Issue 3, pp 287–299 | Cite as

Inter-annual water mass variations from GRACE in central Siberia

  • Sibylle Vey
  • Holger Steffen
  • Jürgen Müller
  • Julia Boike
Review

Abstract

Our study analyses satellite and land-based observations of the Yakutsk region centred at the Lena watershed, an area characterised mainly by continuous permafrost. Using monthly solutions of the Gravity Recovery And Climate Experiment satellite mission, we detect a mass increase over central Siberia from 2002 to 2007 which reverses into a mass decrease between 2007 and 2011. No significant mass trend is visible for the whole observation period. To further quantify this behaviour, different mass signal components are studied in detail: (1) inter-annual variation in the atmospheric mass, (2) a possible effect of glacial isostatic adjustment (GIA), and (3) hydrological mass variations. In standard processing the atmospheric mass signal is reduced based on the data from numerical weather prediction models. We use surface pressure observations in order to validate this atmospheric reduction. On inter-annual time scale the difference between the atmospheric mass signal from model prediction and from surface pressure observation is \(<\)4 mm in equivalent water height. The effect of GIA on the mass signal over Siberia is calculated using a global ice model and a spherically symmetric, compressible, Maxwell-viscoelastic earth model. The calculation shows that for the investigated area any effect of GIA can be ruled out. Hence, the main part of the signal can be attributed to hydrological mass variations. We briefly discuss potential hydrological effects such as changes in precipitation, river discharge, surface and subsurface water storage.

Keywords

GRACE Permafrost Mass transport  Earth’s system Hydrology 

References

  1. Alexanderson H, Hjort C, Möller P, Antonov O, Pavlov M (2001) The North Taymyr ice-marginal zone, Arctic Siberia—a preliminary overview and dating. Global Planet Change 31(1–4):427–445CrossRefGoogle Scholar
  2. Alexanderson H, Adrielsson L, Hjort C, M ller P, Antonov O, Eriksson S, Pavlov M (2002) Depositional history of the North Taymyr ice-marginal zone, Siberia—a landsystem approach. J Quat Sci 17(4):361–382CrossRefGoogle Scholar
  3. Andersen O, Krogh P, Bauer-Gottwein P, Leiriao S, Smith R, Berry P (2010) Terrestrial water storage from GRACE and satellite altimetry in the Okavango Delta (Botswana). In: Mertikas SP (ed) Gravity, geoid and earth observations, IAG symposium, vol 135. Springer, Berlin, pp 521–526. doi:10.1007/978-3-642-10634-7_70
  4. Becker M, LLovel W, Cazenave A, Güntner A, Cretaux J-F (2010) Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. CR Geosci 342:223–233. doi:10.1016/j.crte.2009.12.010 CrossRefGoogle Scholar
  5. Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502. doi:10.1029/2004GL021277 CrossRefGoogle Scholar
  6. Berezovskaya S, Yang D, Hinzman L (2005) Long-term annual water balance analysis of the Lena River. Global Planet Change 48:84–95. doi:10.1016/j.gloplacha.2004.12.006 CrossRefGoogle Scholar
  7. Brigham-Grette J, Gualtieri L, Glushkova O, Hamilton T, Mostoller D, Kotov A (2003) Chlorine-36 and 14c chronology support a limited last glacial maximum across Central Chukotka, northeastern Siberia, and no Beringian ice sheet. Quat Res 59(3):386–398CrossRefGoogle Scholar
  8. Brouchkov A, Fukuda M, Fedorov A, Konstantinov P, Iwahana G (2004) Thermokarst as a short-term permafrost disturbance. Central Yakutia. Permafrost Periglac Process 15:81–87CrossRefGoogle Scholar
  9. Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1998) Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, Boulder. Revised February 2001Google Scholar
  10. Chao BF, Wu YH, Zhang Z, Ogawa R (2011) Gravity variation in Siberia: GRACE observation and possible causes. Terr Atmos Ocean Sci 22:149–155. doi:10.3319/TAO.2010.07.26.03(TibXS) CrossRefGoogle Scholar
  11. Chen J, Wilson C, Tapley B, Yang Z, Niu G (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114(B5):1–9. doi:10.1029/2008JB006056 Google Scholar
  12. Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109:B09402. doi:10.1029/2004JB003028 CrossRefGoogle Scholar
  13. Chevychelov A, Bosikov N (2010) Natural conditions. In: Troeva E, Isaev A, Karpov N (eds) The Far North: plant biodiversity and ecology of Yakutia, vol 3. Springer, Heidelberg. doi:10.1007/978-90-481-3774-9 Google Scholar
  14. Chudinova SM, Frauenfeld OW, Barry RG, Zhang T, Sorokovikov VA (2006) Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J Geophys Res 111:F02008. doi:10.1029/2005JF000342 CrossRefGoogle Scholar
  15. Costard F, Gautier E (2008) Large rivers: geomorphology and management, The Lena River: hydromorphodynamic features in a deep permafrost zone, chap 11. Wiley, ChichesterGoogle Scholar
  16. Czudek T, Demek J (1970) Thermokarst in Siberia and its influence on the development of lowland relief. Quat Res 1:103–120. doi:10.1016/0033-5894(70)90013-X CrossRefGoogle Scholar
  17. Denton GH, Hughes TJ (1981) The Last great ice sheets. Wiley, New YorkGoogle Scholar
  18. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134. doi:10.1016/S0022-1694(02), 00283-4 CrossRefGoogle Scholar
  19. Duan XJ, Guo JY, Shum CK, van der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geod 83:1095–1106. doi:10.1007/s00190-009-0327-0 CrossRefGoogle Scholar
  20. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Interiors 25:297–356CrossRefGoogle Scholar
  21. ECMWF (2009) MARS User Guide. Technical NotesGoogle Scholar
  22. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astr Soc 46:647–667CrossRefGoogle Scholar
  23. Flechtner F (2007) AOD1B product description document for product releases 01 to 04. GFZ level-2 processing standards document for level-2 product release 0004, Rev. 1.0, GRACE 327 743 (GR-GFZ-STD-001), Deutsches GeoForschungsZentrum (GFZ), Potsdam, GermanyGoogle Scholar
  24. Frappart F, Ramillien G, Biancamaria S, Mognard NM, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). J Geophys Res 33:1–5. doi:10.1029/2005GL024778 Google Scholar
  25. Frappart F, Papa F, G ntner A, Werth S, Ramillien G, Prigent C, Rossow WB, Bonnet M-P (2010) Interannual variations of the terrestrial water storage in the lower Ob-basin from a multisatellite approach. Hydrol Earth Syst Sci 14:2443–2453. doi:10.5194/hess-14-2443-2010 CrossRefGoogle Scholar
  26. Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using GRACE gravimetry products. Int J Remote Sens 32:431–453. doi:10.1080/01431160903474954 CrossRefGoogle Scholar
  27. Groisman PY, Knight R, Razuraev V, Bulygina O, Karl T (2006) State of the ground: climatology and changes during the past 69 years over Northern Eurasia for a rarely used measure of snow cover and frozen land. J Clim 19:4933–4955. doi:10.1175/JCLI3925.1 CrossRefGoogle Scholar
  28. Gualtieri L, Glushkova O, Brigham-Grette J (2000) Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far Eastern Russia. Bull Geol Soc Am 112(7):1106–1118CrossRefGoogle Scholar
  29. Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43(5):19CrossRefGoogle Scholar
  30. Han S-C, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109:B04403. doi:10.1029/2003JB002501 CrossRefGoogle Scholar
  31. Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, Central Lena River Basin, Russia. Permafrost Periglac Processes 21:30–41. doi:10.1002/ppp.662 Google Scholar
  32. Kaufmann G (2004) Program package ICEAGE, Version 2004. Manuscript. Institut für Geophysik der Universität Güttingen, p 40Google Scholar
  33. Kaufmann G, Lambeck K (2002) Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. J Geophys Res 107(B11):ETG5-1–ETG5-15CrossRefGoogle Scholar
  34. Kravtsova VI, Bystrova AG (2009) Changes in thermokarst lake sizes in different regions of Russia for the last 30 years. Kriosfera Zemli (Earth Cryosphere) 13:16–26Google Scholar
  35. Lambeck K, Purcell A, Funder S, kjær KH, Larsen E, Möller P (2006) Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35(3): 539–575CrossRefGoogle Scholar
  36. Lambeck K, Purcell A, Zhao J, Svensson N-O (2010) The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39(2):410–435CrossRefGoogle Scholar
  37. Landerer FW, Dickey JO, Güntner A (2010) The terrestrial water budget of the Eurasian pan-Arctic from GRACE-Satellite measurements during 2003–2009. J Geophys Res 115:D23115. doi:10.1029/2010JD014584 CrossRefGoogle Scholar
  38. Leblanc M, Tregoning P, Ramillien G, Tweed S, Fakes A et al (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45(4):W04408. doi:10.1029/2008WR007333 CrossRefGoogle Scholar
  39. Lee H, Shum CK, Tseng K-H, Guo J-Y, Kuo C-Y (2011) Present-day lake level variation from Envisat altimetry over the Northeastern Qinghai-Tibetan Plateau: links with precipitation and temperature. Terr Atmos Ocean Sci 22:169–175. doi:10.3319/TAO.2010.08.09.01(TibXS) CrossRefGoogle Scholar
  40. Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290(1–2):30–36. doi:10.1016/j.epsl.2009.11.053 CrossRefGoogle Scholar
  41. McBean G, Chen D, Førland E, Fyfe J, Groisman PY, King R, Melling H, Vose R, Whitfield PH (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, pp 20-60Google Scholar
  42. Mitrovica JX, Davis JL, Shapiro II (1994) A spectral formalism for computing three-dimensional deformations due to surface loads 1. Theory. J Geophys Res 99(B4):7057–7073CrossRefGoogle Scholar
  43. Mitrovica JX, Milne GA (1998) Glaciation-induced perturbations in the Earth’s rotation: a new appraisal. J Geophys Res 103:985–1005CrossRefGoogle Scholar
  44. Möller P, Hjort C, Alexanderson H, Sallaba F (2011) Glacial history of the Taymyr Peninsula and the Severnaya Zemlya Archipelago, Arctic Russia. Dev Quat Sci 15:373–384. doi:10.1016/B978-0-444-53447-7.00028-3 Google Scholar
  45. Morishita Y, Heki K (2008) Characteristic precipitation patterns of El Nino/La Nina in time-variable gravity fields by GRACE. Earth Planet Sci Lett 272(3–4):677–682. doi:10.1016/j.epsl.2008.06.003 CrossRefGoogle Scholar
  46. Muskett RR, Romanovsky VE (2009) Groundwater storage changes in Arctic permafrost watersheds from GRACE and in situ measurements. Environ Res Lett 4:045009. doi:10.1088/1748-9326/4/4/045009 CrossRefGoogle Scholar
  47. Muskett RR, Romanovsky VE (2011) Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sens 3:378–397. doi:10.3390/rs3020378 CrossRefGoogle Scholar
  48. Ogawa R (2010) Transient, seasonal and inter-annual gravity changes from GRACE data: Geophysical modelings, Hakkaido University, Sapporo, Japan. PhD thesisGoogle Scholar
  49. Ogawa R, Chao BF, Heki K (2011) Acceleration signal in grace time-variable gravity in relation to interannual hydrological changes. Geophys J Int 184:673–679CrossRefGoogle Scholar
  50. Osawa A, Zyryanova O, Matsuura Y, Kajimoto T, Wein RW (2009) Permafrost ecosystem: Siberian Larch forests. Springer, HeidelbergGoogle Scholar
  51. Papa F, Prigent C, Rossow WB (2008) Monitoring flood and discharge variations in the Large Siberian Rivers From a multi-satellite technique. Surv Geophys 29:297–317CrossRefGoogle Scholar
  52. Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from grace and relative sea level data. Geophys J Int 171(2):497–508CrossRefGoogle Scholar
  53. Peltier W (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  54. Ramillien G, Frappart F, Güntner ACA (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235:283–301CrossRefGoogle Scholar
  55. Rawlins M, Serreze M, Schroeder R, Zhang X, McDonald K (2009) Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007. Environ Res Lett 4:045011. doi:10.1088/1748-9326/4/4/045011 CrossRefGoogle Scholar
  56. Ray R, Rowlands D, Egbert G (2003) Tidal models in a new era of satellite gravimetry. Space Sci Rev 108:271–282. doi:10.1023/A:1026223308107 CrossRefGoogle Scholar
  57. Rennermalm AK, Wood EF, Troy TJ (2010) Observed changes in pan-arctic cold-season minimum monthly river discharge. Clim Dyn 35:923–939. doi:10.1007/s00382-009-0730-5 CrossRefGoogle Scholar
  58. Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi:10.1175/BAMS-85-3-381 Google Scholar
  59. Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. doi:10.1038/nature08238 CrossRefGoogle Scholar
  60. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wuensch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res 113:B08419. doi:10.1029/2007JB005363 CrossRefGoogle Scholar
  61. Seo K-W, Ryu D, Kim B-M, Waliser DE, Tian B, Eom J (2010) GRACE and AMSR-E-based estimates of winter season solid precipitation accumulation in the Arctic drainage region. J Geophys Res 115:D20117. doi:10.1029/2009JD013504 CrossRefGoogle Scholar
  62. Shiklomanov AI, Lammers RB, Rawlins MA, Smith LC, Pavelsky TM (2007) Temporal and spatial variations in maximum river discharge from a new Russian data set. J Geophys Res 112:G04S53. doi:10.1029/2006JG000352 CrossRefGoogle Scholar
  63. Stauch G, Lehmkuhl F, Frechen M (2007) Luminescence chronology from the Verkhoyansk Mountains (North-Eastern Siberia). Quat Geochronol 2(1–4):255–259CrossRefGoogle Scholar
  64. Stauch G, Gualtieri L (2008) Late Quaternary glaciations in northeastern Russia. J Quat Sci 23(6–7):545–558. doi:10.1002/jqs.1211 CrossRefGoogle Scholar
  65. Stauch G, Lehmkuhl F (2011) Extent and timing of Quaternary glaciations in the Verkhoyansk Mountains. Dev Quat Sci 15:877–881. doi:10.1016/B978-0-444-53447-7.00064-7 Google Scholar
  66. Steffen H, Müller J, Peterseim N (2012) Mass variations in the Siberian permafrost region from GRACE. In: Kenyon SeaE (ed) Geodesy for Planet Earth, IAG symposium, vol 136. Springer, Berlin, pp 597–603. doi:10.1007/978-3-642-20338-1_73
  67. Steffen H, Kaufmann G (2005) Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth’s mantle. Geophys J Int 163(2):801–812. doi:10.1111/j.1365-246X.2005.02740.x CrossRefGoogle Scholar
  68. Steffen H, Denker H, Müller J (2008) Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamic models. J Geodyn 46(3–5):155–164. doi:10.1016/j.jog.2008.03.002 Google Scholar
  69. Steffen H, Gitlein O, Denker H, Müller J, Timmen L (2009) Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics 474:69–77. doi:10.1016/j.tecto.2009.01.012 Google Scholar
  70. Steffen H, Wu P (2011) Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. J Geodyn 52(3–4):169–204. doi:10.1016/j.jog.2011.03.002 CrossRefGoogle Scholar
  71. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S et al (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23(11–13):1229–1271. doi:10.1016/j.quascirev.2003.12.008 CrossRefGoogle Scholar
  72. Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC (2011) West Siberian Plain as a late glacial desert. Quat Int 237(1–2):45–53. doi:10.1016/j.quaint.2011.01.013 CrossRefGoogle Scholar
  73. Velicogna I, Wahr J, den Dool HV (2001) Can surface pressure be used to remove atmospheric contributions from GRACE data with sucient accuracy to recover hydrological signals? J Geophys Res 106:16415-16434. doi:10.1029/2001JB000228 Google Scholar
  74. Velicogna I, Tong J, Zhang T, Kimball J (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena River Basin, Eurasia, detected from grace. Geophys Res Lett 39(9):L09403. doi:10.1029/2012GL051623 CrossRefGoogle Scholar
  75. Vey S, Dietrich R, Rülke A, Fritsche M, Steigenberger P, Rothacher M (2010) Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J Clim 23:1675-1695. doi:10.1175/2009JCLI2787.1 Google Scholar
  76. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi:10.1029/98JB02844 Google Scholar
  77. Wang HS, Wu P, van der Wal W (2008) Using postglacial sea level, crustal velocities and gravity-rate-of-change to constrain the influence of thermal effects on mantle lateral heterogeneities. J Geodyn 46(3–5):104–117. doi:10.1016/j.jog.2008.03.003 CrossRefGoogle Scholar
  78. Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol. Earth Syst Sci 14:59–78. doi:10.5194/hess-14-59-2010
  79. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179:1499–1515. doi:10.1111/j.1365-246X.2009.04355.x CrossRefGoogle Scholar
  80. Yang D, Kane DL, Hinzman LD, Zhang X, Zhang T, Ye H (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res 107:4694. doi:10.1029/2002JD002542 Google Scholar
  81. Zech W, Bäumler R, Savoskul O, Braitseva O, Melekestsev J (1997) Evidence of middle pleistocene glaciation in SW-Kamchatka. Zeitschrift für Gletscherkunde und Glazialgeologie 33(1):15–20 Google Scholar
  82. Zech W, Zech R, Zech M, Leiber K, Dippold M, Frechen M, Bussert R, Andreev A (2011) Obliquity forcing of Quaternary glaciation and environmental changes in NE Siberia. Quat Int 234(1–2):133–145Google Scholar
  83. Zenner L, Gruber T, Jaeggi A, Beutler G (2010) Propagation of atmospheric model errors to gravity potential harmonic-impact on GRACE de-aliasing. Geophys J Int 182:797–807. doi:10.1111/j.1365-246X.2010.04669.x CrossRefGoogle Scholar
  84. Zorin YA, Kozhevnikov VM, Novoselova MR, Turutanov EK (1989) Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions. Tectonophysics 168:327–337. doi:10.1016/0040-1951(89)90226-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sibylle Vey
    • 1
  • Holger Steffen
    • 2
  • Jürgen Müller
    • 1
  • Julia Boike
    • 3
  1. 1.Institut of GeodesyLeibniz Universität HannoverHannoverGermany
  2. 2.Lantmäteriet, Lantmäterigatan 2cGävleSweden
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany

Personalised recommendations