Journal of Geodesy

, Volume 87, Issue 2, pp 117–125 | Cite as

Continental mass change from GRACE over 2002–2011 and its impact on sea level

Original Article

Abstract

Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to −(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates.

Keywords

GRACE Time-variable gravity Mass variation Sea level Geocentre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32: L12602. doi:10.1029/2005GL023112 CrossRefGoogle Scholar
  2. Baur O (2012) On the computation of mass-change trends from GRACE gravity field time-series. J Geodyn. doi:10.1016/j.jog.2012.03.007
  3. Baur O, Kuhn M, Featherstone WE (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114: B06407. doi:10.1029/2008JB006239 CrossRefGoogle Scholar
  4. Baur O, Kuhn M, Featherstone WE (2012) GRACE-derived linear and non-linear secular mass variations over Greenland. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, IAG series 137. Springer, Berlin-Heidelberg, pp 381–386Google Scholar
  5. Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S (eds) IPCC climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 385–432Google Scholar
  6. Blewitt G, Clarke P (2003) Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108: 2311. doi:10.1029/2002JB002290 CrossRefGoogle Scholar
  7. Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298: 263–274. doi:10.1016/j.epsl.2010.07.035 CrossRefGoogle Scholar
  8. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65: 83–88. doi:10.1016/j.gloplacha.2008.10.004 CrossRefGoogle Scholar
  9. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32: L14405. doi:10.1029/2005GL022964 CrossRefGoogle Scholar
  10. Chen JL, Tapley BD, Wilson CR (2006a) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248: 368–378. doi:10.1016/j.epsl.2006.05.039 CrossRefGoogle Scholar
  11. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006b) Antarctic mass rates from GRACE. Geophys Res Lett 33: L11502. doi:10.1029/2006GL026369 CrossRefGoogle Scholar
  12. Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34: L22501. doi:10.1029/2007GL031871 CrossRefGoogle Scholar
  13. Chen JL, Wilson CR, Seo K-W (2009) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod 83: 679–687. doi:10.1007/s00190-008-0282-1 CrossRefGoogle Scholar
  14. Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109: B09402. doi:10.1029/2004JB003028 CrossRefGoogle Scholar
  15. Cheng MK, Tapley BD, Ries JC (2010) Geocenter variations from analysis of SLR data. IAG Commission 1 Symposium 2010. Reference Frames for Applications in Geosciences (REFAG2010), Marne-La-Vallee, France, 4–8 Oct 2010Google Scholar
  16. Crétaux J-F, Soudarin L, Davidson FJM, Gennero M-C, Bergé-Nguyen M, Cazenave A (2002) Seasonal and interannual geocentre motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107: 2374. doi:10.1029/2002JB001820 CrossRefGoogle Scholar
  17. Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys 10: 761–797. doi:10.1029/RG010i003p00761 CrossRefGoogle Scholar
  18. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astr Soc 46: 647–667. doi:10.1111/j.1365-246X.1976.tb01252.x CrossRefGoogle Scholar
  19. Flechtner F (2007) AOD1B product description document for product releases 01 to 04 (Rev 3.1). Technical report, GeoForschungszentrum PotsdamGoogle Scholar
  20. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi:10.1038/nature10847
  21. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep 327, Department of Geod Sci and Surv, Ohio State University, ColumbusGoogle Scholar
  22. Koch KR (2005) Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Stud Geophys Geod 49: 259–275. doi:10.1007/s11200-005-0009-1 CrossRefGoogle Scholar
  23. Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36: L04608. doi:10.1029/2008GL036010 CrossRefGoogle Scholar
  24. Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24: 122–129. doi:10.5670/oceanog.2011.32 CrossRefGoogle Scholar
  25. Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G (2010) Global and water storage change from GRACE over 2002–2009: inference on sea level. C R Geoscience 342: 179–188. doi:10.1016/j.crte.2009.12.004 CrossRefGoogle Scholar
  26. Lombard A, Garcia D, Ramillien G, Cazenave A, Biancale R, Lemoine JM, Flechtner F, Schmidt R, Ishii M (2007) Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet Sci Lett 254: 194–202. doi:10.1016/j.epsl.2006.11.035 CrossRefGoogle Scholar
  27. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314: 1286–1289. doi:10.1126/science.1130776 CrossRefGoogle Scholar
  28. Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290: 30–36. doi:10.1016/j.epsl.2009.11.053 CrossRefGoogle Scholar
  29. McCarthy DD, Petit G (2004) IERS conventions (2003). IERS technical note 32Google Scholar
  30. Métivier L, Greff-Lefftz M, Altamimi Z (2010) On secular geocentre motion: the impact of climate changes. Earth Planet Sci Lett 296: 360–366. doi:10.1016/j.epsl.2010.05.021 CrossRefGoogle Scholar
  31. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2: 471–478. doi:10.1038/ngeo544 CrossRefGoogle Scholar
  32. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409: 1026–1029. doi:10.1038/35059054 CrossRefGoogle Scholar
  33. Munk W (2002) Twentieth century sea level: an enigma. Proc Natl Acad Sci USA 99: 6550–6555. doi:10.1073/pnas.092704599 CrossRefGoogle Scholar
  34. Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171: 497–508. doi:10.1111/j.1365-246X.2007.03556.x CrossRefGoogle Scholar
  35. Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Int 181: 762–768. doi:10.1111/j.1365-246X.2010.04508.x Google Scholar
  36. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370. doi:10.1126/science.1135456 CrossRefGoogle Scholar
  37. Rietbroek R, Fritsche M, Brunnabend S-E, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2011) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi:10.1016/j.jog.2011.02.003
  38. Rignot E, Velicogna I, van den Broeke M, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38: L05503. doi:10.1029/2011GL046583 CrossRefGoogle Scholar
  39. Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288: 516–523. doi:10.1016/j.epsl.2009.10.013 CrossRefGoogle Scholar
  40. Riva REM, Bamber JL, Lavallée DA, Wouters B (2010) Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys Res Lett 37: L19605. doi:10.1029/2010GL044770 CrossRefGoogle Scholar
  41. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res 113: B08419. doi:10.1029/2007JB005363 CrossRefGoogle Scholar
  42. Song YT, Colberg F (2011) Deep ocean warming assessed from altimeters, Gravity Recovery and Climate Experiment, in situ measurements, and a nonBoussinesq ocean general circulation model. J Geophys Res 116: C02020. doi:10.1029/2010JC006601 CrossRefGoogle Scholar
  43. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33: L08402. doi:10.1029/2005GL025285 CrossRefGoogle Scholar
  44. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39: 1223. doi:10.1029/2002WR001808 CrossRefGoogle Scholar
  45. Swenson S, Chambers D, Wahr J (2008) Estimating geocentre variations from a combination of GRACE and ocean model output. J Geophys Res 113: B08410. doi:10.1029/2007JB005338 CrossRefGoogle Scholar
  46. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  47. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36: L18401. doi:10.1029/2009GL039401 CrossRefGoogle Scholar
  48. Velicogna I, Wahr J (2006a) Measurements of time-variable gravity show mass loss in Antarctica. Science 311: 1754–1756. doi:10.1126/science.1123785 CrossRefGoogle Scholar
  49. Velicogna I, Wahr J (2006b) Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–331. doi:10.1038/nature05168 CrossRefGoogle Scholar
  50. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36: L19503. doi:10.1029/2009GL040222 CrossRefGoogle Scholar
  51. Wagner CA, McAdoo DC (2011) Error calibration of geopotential harmonics in recent and past gravitational fields. J Geod. doi:10.1007/s00190-011-0494-7
  52. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi:10.1029/98JB02844 Google Scholar
  53. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113: C06015. doi:10.1029/2007JC004517 CrossRefGoogle Scholar
  54. Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111: B09401. doi:10.1029/2005JB004100 CrossRefGoogle Scholar
  55. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3: 642–646. doi:10.1038/ngeo938 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.Western Australian Centre for Geodesy and The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia

Personalised recommendations