Journal of Geodesy

, Volume 87, Issue 1, pp 69–87 | Cite as

Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland

  • C. Siemes
  • P. Ditmar
  • R. E. M. Riva
  • D. C. Slobbe
  • X. L. Liu
  • H. Hashemi Farahani
Open Access
Original Article


The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the Earth’s gravity field since March 2002. We propose a new filtering procedure for post-processing GRACE-based monthly gravity field solutions provided in the form of spherical harmonic coefficients. The procedure is tuned for the optimal estimation of linear trends and other signal components that show a systematic behavior over long time intervals. The key element of the developed methodology is the statistically optimal Wiener-type filter which makes use of the full covariance matrices of noise and signal. The developed methodology is applied to determine the mass balance of the Greenland ice sheet, both per drainage system and integrated, as well as the mass balance of the ice caps on the islands surrounding Greenland. The estimations are performed for three 2-year time intervals (2003–2004, 2005–2006, and 2007–2008), as well as for the 6-year time interval (2003–2008). The study confirms a significant difference in the behavior of the drainage systems over time. The average 6-year rate of mass loss in Greenland is estimated as 165 ± 15 Gt/year. The rate of mass loss of the ice caps on Ellesmere Island (together with Devon Island), Baffin Island, Iceland, and Svalbard is found to be 22 ± 4, 21 ± 6, 17 ± 9, and 6 ± 2 Gt/year, respectively. All these estimates are corrected for the effect of glacial isostatic adjustment.


Satellite gravimetry Time-variable gravity Ice sheet Mass balance 



We thank three anonymous reviewers and Prof. Nico Sneeuw, the handling editor, for the help in improving the manuscript. The work was sponsored by the Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF) for the use of supercomputer facilities, with financial support from the Nederlandse organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO).

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2001) Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J Geophys Res 106(D24): 33729–33741CrossRefGoogle Scholar
  2. Baur O, Kuhn M, Featherstone WE (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114: B06407. doi: 10.1029/2008JB006239 CrossRefGoogle Scholar
  3. Baur O, Sneeuw N (2011) Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology. J Geod 85: 607–615. doi: 10.1007/s00190-011-0463-1 CrossRefGoogle Scholar
  4. Bettadpur SV (2007) UTCSR level-2 processing standards document for Level-2 product release 0004. Center for Space Research, University of Texas at AustinGoogle Scholar
  5. Chen JL, Wilson CR, Seo K-W (2009) S2 tide aliasing in GRACE time variability gravity solutions. J Geod 83: 679–687. doi: 10.1007/s00190-008-0282-1 CrossRefGoogle Scholar
  6. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma J, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geod 82: 331–346. doi: 10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  7. Gardner AS, Moholdt G, Wouters B, Wolken GJ, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473: 357–360. doi: 10.1038/nature10089 CrossRefGoogle Scholar
  8. Ilk K-H, Feuchtinger M, Mayer-Gürr T (2005) Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In: Sansò F (ed) A window on the future of geodesy. IUGG General Assembly 2003, June 30–July 11 2003, Sapporo. International Association of Geodesy Symposia. Springer, Berlin, vol 128, pp 189–194Google Scholar
  9. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, CambridgeGoogle Scholar
  10. Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37: L06501. doi: 10.1029/2010GL042460 CrossRefGoogle Scholar
  11. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175: 417–432. doi: 10.1111/j.1365-246X.2008.03922.x CrossRefGoogle Scholar
  12. Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2000) Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289: 428–430. doi: 10.1126/science.289.5478.428 CrossRefGoogle Scholar
  13. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31: L24402. doi: 10.1029/2004GL021533 CrossRefGoogle Scholar
  14. Lemoine JM, Bruinsma S, Loyer S, Biancale R, Marty JC, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39: 1620–1629CrossRefGoogle Scholar
  15. Liu X, (2008) Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach (PhD thesis). Nederlands Geodetic Comission, Publications on Geodesy, vol 68, DelftGoogle Scholar
  16. Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181: 769–788CrossRefGoogle Scholar
  17. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314: 1286–1289. doi: 10.1126/science.1130776 CrossRefGoogle Scholar
  18. Luthcke SB, Rowlands DD, Lemoine FG, Klosko SM, Chinn D, McCarthy JJ (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33: L02402. doi: 10.1029/2005GL024846 CrossRefGoogle Scholar
  19. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dyn 56: 394–415CrossRefGoogle Scholar
  20. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32: 111–149. doi: 10.1146/ CrossRefGoogle Scholar
  21. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311: 986–990. doi: 10.1126/science.1121381 CrossRefGoogle Scholar
  22. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38: L05503. doi: 10.1029/2011GL046583 CrossRefGoogle Scholar
  23. Schmidt R (2007) Static field geopotential coefficients estimated from satellite data only. Digital media, GFZ Potsdam GRACE science data system. Oberpfaffenhofen, GermanyGoogle Scholar
  24. Schrama EJO, Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J Geophys Res 116: B02407. doi: 10.1029/2009JB006847 CrossRefGoogle Scholar
  25. Slobbe DC, Lindenbergh R, Ditmar P (2008) Estimation of volume change rates of Greenland’s ice sheet from ICESat data. Remote Sensing Environ 112: 4204–4213CrossRefGoogle Scholar
  26. Slobbe DC, Ditmar P, Lindenbergh RC (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys J Int 176: 95–106. doi: 10.1111//j.1365-246X.2008.03978.x CrossRefGoogle Scholar
  27. Sørensen LS, Simonsen SB, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg CS (2011) Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—the impact of interpolation, sampling, and firn density. Cryosphere 5: 173–186CrossRefGoogle Scholar
  28. Stearns LA, Hamilton GS (2007) Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophys Res Lett 34: L05503. doi: 10.1029/2006GL028982 CrossRefGoogle Scholar
  29. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  30. Van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326: 984–986. doi: 10.1126/science.1178176 CrossRefGoogle Scholar
  31. Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  32. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36: L19503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  33. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30205–30229CrossRefGoogle Scholar
  34. Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33: L06401. doi: 10.1029/2005GL025305 CrossRefGoogle Scholar
  35. Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35: L20501. doi: 10.1029/2008GL034816 CrossRefGoogle Scholar
  36. Zhang Z-Z, Chao BF, Lu Y, Hsu H-T (2009) An effective filtering for GRACE time-variable gravity: fan filter. Geophys Res Lett 36: L17311. doi: 10.1029/2009GL039459 CrossRefGoogle Scholar
  37. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bently C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palmi S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34: 405–445CrossRefGoogle Scholar
  38. Zwally HJ, Giovinetto MB, Li J, Cornejo HG, Beckley MA, Brenner AC, Saba JL, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51(175): 509–527CrossRefGoogle Scholar
  39. Zwally HJ, Li J, Brenner A, Beckley M, Cornejo HG, Dimarzio J, Giovinetto MB, Neumann TA, Robbins J, Saba JL, Yi D, Wang W (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–2007 versus 1992–2002. J Glaciol 57: 88–102CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • C. Siemes
    • 1
    • 2
  • P. Ditmar
    • 1
  • R. E. M. Riva
    • 1
  • D. C. Slobbe
    • 1
  • X. L. Liu
    • 1
    • 3
  • H. Hashemi Farahani
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.European Space AgencyNoordwijkThe Netherlands
  3. 3.Fugro Intersite B.V.LeidschendamThe Netherlands

Personalised recommendations