Algorithms for geodesics


Algorithms for the computation of geodesics on an ellipsoid of revolution are given. These provide accurate, robust, and fast solutions to the direct and inverse geodesic problems and they allow differential and integral properties of geodesics to be computed.


  1. Beltrami E (1865) Risoluzione del problema: Riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette. Annali Mat Pura Appl 7:185–204.

  2. Bessel FW (1825) Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen. Astron Nachr 4(86):241–254. [translated into English by Karney CFF and Deakin RE as The calculation of longitude and latitude from geodesic measurements. Astron Nachr 331(8):852–861 (2010)]

    Google Scholar 

  3. Bowring BR (1997) The central projection of the spheroid and surface lines. Surv Rev 34(265): 163–173

    Article  Google Scholar 

  4. Bugayevskiy LM, Snyder JP (1995) Map projections: a reference manual. Taylor & Francis, London

    Google Scholar 

  5. Christoffel EB (1868) Allgemeine Theorie der geodätischen Dreiecke. Math Abhand König Akad der Wiss zu Berlin 8:119–176.

  6. Clairaut AC (1735) Détermination géometrique de la perpendiculaire à la méridienne tracée par M Cassini. Mém de l’Acad Roy des Sciences de Paris 1733:406–416.

  7. Clenshaw CW (1955) A note on the summation of Chebyshev series. Math Tables Other Aids Comput 9(51): 118–120

    Google Scholar 

  8. Danielsen JS (1989) The area under the geodesic. Surv Rev 30(232): 61–66

    Article  Google Scholar 

  9. Gauss CF (1828) Disquisitiones Generales circa Superficies Curvas. Dieterich, Göttingen. [translated into English by Morehead JC and Hiltebeitel AM as General investigations of curved surfaces of 1827 and 1825. Princeton Univ Lib (1902)]

  10. Helmert FR (1880) Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie, vol 1. Teubner, Leipzig. [translated into English by Aeronautical chart and information center (St Louis, 1964) as Mathematical and physical theories of higher geodesy, part 1.]

  11. Jacobi CGJ (1891) Über die Curve, welche alle von einem Punkte ausgehenden geodätischen Linien eines Rotationsellipsoides berührt. In: Weierstrass KTW (ed) Gesammelte Werke, vol 7. Reimer, Berlin, pp 72–87. [op post, completed by Wangerin FHA]

  12. Karney CFF (2011) Geodesics on an ellipsoid of revolution. Tech rep, SRI International.

  13. Karney CFF (2012) GeographicLib, version 1.22.

  14. Legendre AM (1806) Analyse des triangles tracés sur la surface d’un sphéroïde. Mém de l’Inst Nat de France, 1st sem, pp 130–161.

  15. Letoval’tsev IG (1963) Generalization of the gnomonic projection for a spheroid and the principal geodetic problems involved in the alignment of surface routes. Geod Aerophotogr 5:271–274 [translation of Geodeziya i Aerofotos’emka 5:61–68 (1963)]

  16. Maxima (2009) A computer algebra system, version 5.20.1.

  17. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, London.

  18. Oriani B (1806) Elementi di trigonometria sferoidica, Pt 1. Mem dell’Ist Naz Ital 1(1):118–198.

  19. Oriani B (1808) Elementi di trigonometria sferoidica, Pt 2. Mem dell’Ist Naz Ital 2(1):1–58.

  20. Oriani B (1810) Elementi di trigonometria sferoidica, Pt 3. Mem dell’Ist Naz Ital 2(2):1–58.

  21. Rapp RH (1993) Geometric geodesy, part II. Tech rep, Ohio State University.

  22. Snyder JP (1987) Map projection—a working manual. Professional Paper 1395, US Geological Survey.

  23. Vermeille H (2002) Direct transformation from geocentric coordinates to geodetic coordinates. J Geod 76(9): 451–454

    Article  Google Scholar 

  24. Vincenty T (1975a) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 23(176):88–93 [addendum: Surv Rev 23(180):294 (1976)]

    Google Scholar 

  25. Vincenty T (1975b) Geodetic inverse solution between antipodal points. (unpublished report dated Aug 28)

  26. Wessel P, Smith WHF (2010) Generic mapping tools, 4.5.5.

  27. Williams R (1997) Gnomonic projection of the surface of an ellipsoid. J Navig 50(2): 314–320

    Article  Google Scholar 

Download references


I would like to thank Rod Deakin, John Nolton, Peter Osborne, and the referees of this paper for their helpful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information



Corresponding author

Correspondence to Charles F. F. Karney.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Karney, C.F.F. Algorithms for geodesics. J Geod 87, 43–55 (2013).

Download citation


  • Geometrical geodesy
  • Geodesics
  • Polygonal areas
  • Gnomonic projection
  • Numerical methods