Journal of Geodesy

, Volume 86, Issue 12, pp 1125–1135

A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere

Original Article

Abstract

In GPS meteorology, the weighted mean temperature is usually obtained by using a linear function of the surface temperature Ts. However, not every GPS station can measure the surface temperature. The current study explores the characteristics of surface temperature and weighted mean temperature based on the global pressure and temperature model (GPT) and the Bevis TmTs relationship (Tma + bTs). A new global weighted mean temperature (GWMT) model has been built which directly uses three-dimensional coordinates and day of the year to calculate the weighted mean temperature. The data of year 2005–2009 from 135 radiosonde stations provided by the Integrated Global Radiosonde Archive were used to calculate the model coefficients, which have been validated through examples. The result shows that the GWMT model is generally better than the existing liner models in most areas according to the statistic indexes (namely, mean absolute error and root mean square). Then we calculated precipitable water vapor, and the result shows that GWMT model can also yield high precision PWV.

Keywords

GPS meteorology Weighted mean temperature GPT model GWMT model 

List of abbreviations

GPS

Global positioning system

GPT

Global pressure and temperature

GWMT

Global weighted mean temperature

GNSS

Global navigation satellite system

ECMWF

European Centre for Medium-Range

ECMWF

Weather Forecasts

NCEP/NCAR

National Centers for Environmental Prediction/National Center for Atmospheric Research

IGRA

Integrated Global Radiosonde Archive

IGS

International GNSS service

MAE

Mean absolute error

PWV

Precipitable water vapor

RMS

Root mean square

ZWD

Zenith wet delay

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

190_2012_568_MOESM1_ESM.doc (34 kb)
ESM 1 (DOC 35 kb)

References

  1. Askne J, Nordius H (1987) Estimation of tropospheric delay for mircowaves from surface weather data. Radio Sci 22(3): 379–386CrossRefGoogle Scholar
  2. Bevis M, Businger S, Chiswell S et al (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33: 379–386CrossRefGoogle Scholar
  3. Bevis M, Businger S, Herring AT et al (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14): 15787–15801CrossRefGoogle Scholar
  4. Bevis M, Businger S, Chiswell S (1995) Earth-based GPS meteorology: an overview, American Geophysical Union 1995 fall meeting, EOS, Transactions, American Geophysical Union, vol 76, No. 46 (supplement)Google Scholar
  5. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683CrossRefGoogle Scholar
  6. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20: 1593–1607CrossRefGoogle Scholar
  7. Ding JC (2009) GPS meteorology and its applications. China Meteorological Press, Beijing, pp 1–10Google Scholar
  8. Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35(6): 830–838CrossRefGoogle Scholar
  9. Gu XP (2004) Research on retrieval of GPS water vapor and method of rainfall forecast. Doctorial dissertation, China Agricultural University, pp 1–15Google Scholar
  10. Gu XP, Wang CY, Wu DX (2005) Research on the local algorithm for weighted atmospheric temperature used in GPS remote sensing water vapor. Sci Meterol Sin 25(1): 79–83Google Scholar
  11. Hogg DC, Guiraud FO, Decker MT (1981) Measurement of excess transmission length on earth-space paths. Astron Astrophys 95: 304–307Google Scholar
  12. Li ZH, Zhang XH (2009) New techniques and precise data processing methods of satellite navigation and positioning. Wuhan University Press, WuhanGoogle Scholar
  13. Li JG, Mao JT, Li CC (1999) The approach to remote sensing of water vapor based on GPS and linear regression T m in eastern region of China. Acta Meteorol Sin 57(3): 283–292Google Scholar
  14. Li GP, Huang GF, Liu BQ (2006) Experiment on driving precipitable water vapor form ground-based GPS network in Chengdu Plain. Geom Inform Sci Wuhan Univ 31(12): 1086–1089Google Scholar
  15. Liu YX, Chen YQ, Liu JN (2000) Determination of weighted mean tropospheric temperature using ground meteorological measurement. J Wuhan Tech Univ Survey Map 25(5): 400–403Google Scholar
  16. Lv YP, Yin HT, Huang DF (2008) Modeling of weighted mean atmospheric temperature and application in GPS/PWV of Chengdu region. Sci Survey Map 33(4): 103–105Google Scholar
  17. Mao JT (2006) Research of remote sensing of atmospheric water vapor using Global Positioning System (GPS). Doctorial dissertation, Beijing University, pp 1–5Google Scholar
  18. Rocken C, Ware R, Van Hove T, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20(23): 2631–2634. doi:10.1029/93GL02935 CrossRefGoogle Scholar
  19. Ross RJ, Rosenfeld S (1997) Estimating mean weighted temperature of the atmosphere for Global Positioning System. J Geophys Res 102(18): 21719–21730CrossRefGoogle Scholar
  20. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophys Monogr Ser 15: 247–251CrossRefGoogle Scholar
  21. Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in Global Positioning System geodetic measurements. J Geod 64(2): 127–159Google Scholar
  22. Wang et al (2005) Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J Geophys Res 110: D21101. doi:10.1029/2005JD006215 CrossRefGoogle Scholar
  23. Wang Y, Liu LT, Hao XG et al (2007) The application study of the GPS Meteorology Network in Wuhan region. Acta Geod Cartogr Sin 36(2): 141–145Google Scholar
  24. Wang XY, Dai ZQ, Cao YC et al (2011) Weighted mean temperature T m statistical analysis in ground-based GPS in China. Geomat Inform Sci Wuhan Univ 36(4): 412–416Google Scholar
  25. Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate change using the global positioning system. J Geophys Res 98(D8): 14925–14937. doi:10.1029/93JD00948 CrossRefGoogle Scholar
  26. Zhang HP, Liu JN, Zhu WY (2005) Remote sensing of PWV using ground-based GPS data in Wuhan region. Progr Astron 23(2): 170–179Google Scholar
  27. Zhang SC (2009) Research and application of remote sensing water vapor using ground_based GPS/Met. Doctorial dissertation, Wuhan University, pp 1–7Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina

Personalised recommendations