Journal of Geodesy

, Volume 86, Issue 12, pp 1083–1095 | Cite as

Intersatellite laser ranging instrument for the GRACE follow-on mission

  • B. S. Sheard
  • G. Heinzel
  • K. Danzmann
  • D. A. Shaddock
  • W. M. Klipstein
  • W. M. Folkner
Original Article

Abstract

The Gravity Recovery and Climate Experiment (GRACE) has demonstrated that low–low satellite-to-satellite tracking enables monitoring the time variations of the Earth’s gravity field on a global scale, in particular those caused by mass-transport within the hydrosphere. Due to the importance of long-term continued monitoring of the variations of the Earth’s gravitational field and the limited lifetime of GRACE, a follow-on mission is currently planned to be launched in 2017. In order to minimise risk and the time to launch, the follow-on mission will be basically a rebuild of GRACE with microwave ranging as the primary instrument for measuring changes of the intersatellite distance. Laser interferometry has been proposed as a method to achieve improved ranging precision for future GRACE-like missions and is therefore foreseen to be included as demonstrator experiment in the follow-on mission now under development. This paper presents the top-level architecture of an interferometric laser ranging system designed to demonstrate the technology which can also operate in parallel with the microwave ranging system of the GRACE follow-on mission.

Keywords

GRACE Intersatellite ranging Laser interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alnis J, Matveev A, Kolachevsky N, Udem T, Hänsch TW (2008) Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys. Rev. A 77: 053809CrossRefGoogle Scholar
  2. Anderson DZ (1984) Alignment of resonant optical cavities. Appl Opt 23(17): 2944CrossRefGoogle Scholar
  3. Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the 3rd International Symposium on Formation Flying, Missions and TechnologiesGoogle Scholar
  4. Bertiger W, Bar-Sever Y, Desai S, Dunn C, Haines B, Kruizinga G, Kuang D, Nandi S, Romans L, Watkins M, Wu S, Bettadpur S (2002) GRACE: Millimeters and Microns in Orbit. In: Proc ION GPS 2002Google Scholar
  5. Black ED (2001) An introduction to Pound–Drever–Hall laser frequency stabilization. Am J Phys 69(1): 79–87CrossRefGoogle Scholar
  6. Danzmann K, Rúdiger A (2003) LISA technology–concept, status, prospects. Class Quantum Gravity 20: S1CrossRefGoogle Scholar
  7. Danzmann K, the LISA Science Team (2003) LISA: An ESA cornerstone mission for the detection and observation of gravitational waves. Adv Space Res 32(7): 1233–1242Google Scholar
  8. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2): 97–105CrossRefGoogle Scholar
  9. Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, Romans L, Watkins M, Wu SC, Bettadpur S, Kim J (2003) Instrument of Grace:GPS augments gravity measurements. GPS World 14: 16–28Google Scholar
  10. Folkner WM, de Vine G, Klipstein WM, McKenzie K, Shaddock D, Spero R, Thompson R, Wuchenich D, Yu N, Stephens M, Leitch J, Davis M, de Cino J, Pace C, Pierce R (2010) Laser frequency stabilization for GRACE-II. In: Proceedings of the 2010 Earth Science Technology ForumGoogle Scholar
  11. Folkner WM, de Vine G, Klipstein WM, McKenzie K, Spero R, Thompson R, Yu N, Stephens M, Leitch J, Pierce R, Lam TTY, Shaddock DA (2011) Laser frequency stabilization for GRACE-2 In: Proceedings of the 2011 Earth Science Technology ForumGoogle Scholar
  12. Heinzel G, Rúdiger A, Schilling R, Strain K, Winkler W, Mizuno J, Danzmann K (1999) Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector. Opt Commun 160: 321–334CrossRefGoogle Scholar
  13. Heinzel G, Rúdiger A, Schilling R, Strain K, Winkler W, Mizuno J, Danzmann K (1999) Corrigendum to “Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector”[Opt. Commun. 160 (1999) 321–334]. Opt Commun 164: 161CrossRefGoogle Scholar
  14. Heinzel G, Wand V, García A, Jennrich O, Braxmaier C, Robertson D, Middleton K, Hoyland D, Rúdiger A, Schilling R, Johann U, Danzmann K (2004) The LTP interferometer and phasemeter. Class Quantum Gravity 21: S581–S587CrossRefGoogle Scholar
  15. Heinzel G, Braxmaier C, Danzmann K, Gath P, Hough J, Jennrich O, Johann U, Rúdiger A, Sallusti M, Schulte H (2006) LISA interferometry: recent developments. Class Quantum Gravity 23: S119CrossRefGoogle Scholar
  16. Herman J, Presti D, Codazzi A, Belle C (2004) Attitude Control for GRACE: The first low-flying satellite formation. In: Proceedings of the 18th international symposium on space flight dynamicsGoogle Scholar
  17. Horwath M, Lemoine JM, Biancale R, Bourgogne S (2011) Improved GRACE science results after adjustment of geometric biases in the Level-1B K-band ranging data. J Geod 85: 23–38CrossRefGoogle Scholar
  18. Jeganathan M, Dubovitsky S (2000) Demonstration of nm-level active metrology for long range interferometric displacement measurements. Proc SPIE 4006: 838–846CrossRefGoogle Scholar
  19. Kim J, Lee SW (2009) Flight performance analysis of GRACE K-band ranging instrument with simulation data. Acta Astronautica 65: 1571–1581CrossRefGoogle Scholar
  20. Knudsen P, Andersen O (2002) Correcting GRACE gravity fields for ocean tide effects. Geophys Res Lett 29: 1178CrossRefGoogle Scholar
  21. Krieger G, Fiedler H, Mittermayer J, Papathanassiou K, Moreira A (2003) Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proc Radar Sonar Navig 150: 87CrossRefGoogle Scholar
  22. Loomis BD, Nerem RS, Luthcke SB (2011) Simulation study of a follow-on gravity mission to grace. J Geodesy 1–17. http://dx.doi.org/10.1007/s00190-011-0521-8, doi:10.1007/s00190-011-0521-8
  23. Ludlow AD, Huang X, Notcutt M, Zanon-Willette T, Foreman SM, Boyd MM, Blatt S, Ye J (2007) Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15. Opt Lett 32(6): 641CrossRefGoogle Scholar
  24. McElroy JH, McAvoy N, Johnson EH, Degnan JJ, Goodwin FE, Henderson DM, Nussmeier TA, Stokes LS, Peyton BJ, Flattau T (1977) CO2 Laser communication systems for near-earth space applications. Proc IEEE 65(2): 221CrossRefGoogle Scholar
  25. Morrison E, Meers BJ, Robertson DI, Ward H (1994) Automatic alignment of optical interferometers. Appl Opt 33(22): 5041–5049CrossRefGoogle Scholar
  26. Morrison E, Meers BJ, Robertson DI, Ward H (1994) Experimental demonstration of an automatic alignment system for optical interferometers. Appl Opt 33(22): 5037–5040CrossRefGoogle Scholar
  27. Pierce R, Leitch J, Stephens M, Bender P, Nerem R (2008) Intersatellite range monitoring using optical interferometry. Appl Opt 47: 5007–5018CrossRefGoogle Scholar
  28. Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Koenig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5): 319–334CrossRefGoogle Scholar
  29. Seo KW, Wilson CR, Han SC, Waliser DE (2008) Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides. J Geophys Res 113: B03405CrossRefGoogle Scholar
  30. Shaddock D, Ware B, Halverson PG, Spero RE, Klipstein B (2006) Overview of the LISA Phasemeter. AIP Conf Proc 873: 654–660CrossRefGoogle Scholar
  31. Shaddock DA (2008) Space-based gravitational wave detection with LISA. Class Quantum Gravity 25: 114012CrossRefGoogle Scholar
  32. Smutny B, Lange R, Kämpfner H, Dallmann D, Mühlnikel G, Reinhardt M, Saucke K, Sterr U, Wandernoth B, Czichy R (2008) In-orbit verification of optical inter-satellite communication links based on homodyne BPSK. Proc SPIE 6877: 687702CrossRefGoogle Scholar
  33. Smutny B, Kaempfner H, Muehlnikel G, Sterr U, Wandernoth B, Heine F, Hildebrand U, Dallmann D, Reinhadrt M, Freier A, Lange R, Boehmer K, Feldhaus T, Mueller J, Weichhert A, Greulich P, Seel S, Meyer R, Czichy R (2009) 5.6 Gbps optical intersatellite communication link. Proc SPIE 7199: 719906CrossRefGoogle Scholar
  34. Sneeuw N, Flury J, Rummel R (2005) Science requirements on future missions and simulated mission scenarios. Earth Moon Planets 94: 113–142CrossRefGoogle Scholar
  35. Tapley BD, Chambers DP, Bettadpur S, Ries JC (2003) Large scale ocean circulation from the GRACE GGM01 Geoid. Geophys Res Lett 30(22): 2613CrossRefGoogle Scholar
  36. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Sci 305: 503–505CrossRefGoogle Scholar
  37. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31(9): L09607CrossRefGoogle Scholar
  38. Thomas JB (1999) An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging, JPL Publication, vol 98-15. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  39. Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys Res Lett 31: L06619CrossRefGoogle Scholar
  40. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36: L18401CrossRefGoogle Scholar
  41. Tolker-Nielsen T, Oppenhaeuser G (2002) In Orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. Proc SPIE 4635: 1CrossRefGoogle Scholar
  42. Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geof Teor Appl 40: 321–327Google Scholar
  43. Tröbs M (2005) Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA. Ph.D. thesis, University of HannoverGoogle Scholar
  44. van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning Recent Greenland Mass Loss. Science 326: 984–986CrossRefGoogle Scholar
  45. Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181: 789–805Google Scholar
  46. Ware B, Folkner WM, Shaddock D, Spero R, Halverson P, Harris I, Rogstad T (2006) Phase Measurement System for Inter-Spacecraft Laser Metrology. In:Proceedings of the 2006 Earth Science Technology ConferenceGoogle Scholar
  47. Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83: 569–581CrossRefGoogle Scholar
  48. Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501Google Scholar
  49. Zenner L, Gruber T, Jäggi A, Beutler G (2010) Propagation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys J Int 182: 797–807CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. S. Sheard
    • 1
  • G. Heinzel
    • 1
  • K. Danzmann
    • 1
  • D. A. Shaddock
    • 2
  • W. M. Klipstein
    • 3
  • W. M. Folkner
    • 3
  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and Institute for Gravitational Physics, Leibniz Universität HannoverHanoverGermany
  2. 2.Department of Quantum ScienceThe Australian National UniversityActonAustralia
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations