Journal of Geodesy

, Volume 86, Issue 11, pp 1043–1057 | Cite as

Nontidal ocean loading: amplitudes and potential effects in GPS height time series

  • T. van DamEmail author
  • X. Collilieux
  • J. Wuite
  • Z. Altamimi
  • J. Ray
Open Access
Original Article


Ocean bottom pressure (OBP) changes are caused by a redistribution of the ocean’s internal mass that are driven by atmospheric circulation, a change in the mass entering or leaving the ocean, and/or a change in the integrated atmospheric mass over the ocean areas. The only previous global analysis investigating the magnitude of OBP surface displacements used older OBP data sets (van Dam et al. in J Geophys Res 129:507–517, 1997). Since then significant improvements in meteorological forcing models used to predict OBP have been made, augmented by observations from satellite altimetry and expendable bathythermograph profiles. Using more recent OBP estimates from the Estimating the Circulation and Climate of the Ocean (ECCO) project, we reassess the amplitude of the predicted effect of OBP on the height coordinate time series from a global distribution of GPS stations. OBP-predicted loading effects display an RMS scatter in the height of between 0.2 and 3.7 mm, larger than previously reported but still much smaller (by a factor of 2) than the scatter observed due to atmospheric pressure loading. Given the improvement in GPS hardware and data analysis techniques, the OBP signal is similar to the precision of weekly GPS height coordinates. We estimate the effect of OBP on GPS height coordinate time series using the MIT reprocessed solution, mi1. When we compare the predicted OBP height time series with mi1, we find that the scatter is reduced over all stations by 0.1 mm on average with reductions as high as 0.7 mm at some stations. More importantly we are able to reduce the scatter on 65 % of the stations investigated. The annual component of the OBP signal is responsible for 80 % of the reduction in scatter on average. We find that stations located close to semi-enclosed bays or seas are affected by OBP loading to a greater extent than other stations.


Loading effects Ocean bottom pressure Height coordinate time series Annual signals 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112. doi: 10.1029/2007JB004949
  2. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108. doi: 10.1029/2002JB002082
  3. Blewitt G, Lavallée D, Clarke P, Nurudinov K (2001) A new global model of Earth deformation: seasonal cycle detected. Science 294: 2342–2345CrossRefGoogle Scholar
  4. Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C-Y, Lemoine F, Moore A, Neilan R, Plag H-P, Rothacher M, Shum CK, Sideris M, Schšne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability, chap 9. In: Church J, Woodworth P, Aarup T, Wilson S (eds) Understanding sea-level rise and variability. Wiley-Blackwell, SussexGoogle Scholar
  5. Boehm J, Niell AE, Tregoning P, Schuh H (2006) The global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33. doi: 10.1029/2005GL025546
  6. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81. doi: 10.1007/s00190-007-0135-3
  7. Chambers D, Willis J (2008) Analysis of large-scale ocean bottom pressure variability in the North Pacific. J Geophys Res 113. doi: 10.1029/2008JC004930
  8. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31: L13310. doi: 10.1029/2004GL020461 CrossRefGoogle Scholar
  9. Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34: L05610. doi: 10.1029/2006GL029171 CrossRefGoogle Scholar
  10. Chang W-L, Smith RB, Wicks C, Farrell JM, Puskas CM (2007) Accelerated uplift and magmatic intrusion of the Yellowstone Caldera, 2004 to 2006. Science 318. doi: 10.1126/science.1146842
  11. Chao Y, Fu L-L (1995) A comparison between the TOPEX/POSEIDON data and a global ocean circulation model during 1992–1993. J Geophys Res 100: 24965–24976CrossRefGoogle Scholar
  12. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86: 1–14. doi: 10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  13. Davis J, Elosegui P, Mitrovica J, Tamisiea M (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31. doi: 10.1029/2004GL021435
  14. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107. doi: 10.1029/2001JB000573
  15. Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108: 2200. doi: 10.1029/2002JB002035 CrossRefGoogle Scholar
  16. Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Spac Phys 10(3): 751–797Google Scholar
  17. Ferland R (2010) Combination of the reprocessed IGS Analysis Center SINEX solutions. Paper presentation at IGS 2010 Workshop, Newcastle upon Tyne, UK 30 June 2010Google Scholar
  18. Fratepietro F, Baker TF, Williams SDP, Van Camp M (2006) Ocean loading deformations caused by storm surges on the northwest European shelf. Geophys Res Lett 33: L06317. doi: 10.1029/2005GL025475 CrossRefGoogle Scholar
  19. Fukumori I. (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130: 1370–1383CrossRefGoogle Scholar
  20. Horwath M, Rülke A, Fritsche M, Dietrich R (2010) Mass variation signals in GRACE products and in crustal deformations from GPS: a comparison. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic-geophysical space techniques, advanced technologies in Earth Sciences. Springer, Berlin. ISBN:978-3-642-10227-1Google Scholar
  21. Ji KH, Herring TA (2011) Transient signal detection using GPS measurements: transient inflation at Akutan volcano, Alaska, during early 2008. Geophys Res Lett 38: L06307. doi: 10.1029/2011GL046904 CrossRefGoogle Scholar
  22. Khan SA, Liu L, Wahr J, Howat I, Joughin I, van Dam T, Fleming K (2010a) GPS measurements of crustal uplift near Jakobshavn Isbrae due to glacial ice mass loss. J Geophys Res 115: B09405. doi: 10.1029/2010JB007490 CrossRefGoogle Scholar
  23. Khan S, Wahr J, Bevis M, Velicogna I, Kendrick E (2010b) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37. doi: 10.1029/2010GL042460
  24. Kim SB, Lee T, Fukumori I (2007) Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Nio-3 Region. J Clim 20: 3822–3843. doi: 10.1175/JCLI4206.1 CrossRefGoogle Scholar
  25. King M, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernandez-Pajares M, Lavalée D, Mendes Cerveira PJ, Penna N, Riva R, Steigenberger P, van Dam T, Vituari L, Williams S, Willis P (2010) Constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31(5): 465–507. doi: 10.1007/s10712-010-9100-4 CrossRefGoogle Scholar
  26. Kusche J, Schrama EJO (2005) Surface mass redistribution inversion from global GPS deformation and gravity recovery and climate experiment (GRACE) gravity data. J Geophys Res 110. doi: 10.1029/2004JB003556
  27. Lavallée DA, Moore P, Clarke PJ, Petrie EJ, van Dam T, King MA (2010) J2: an evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys Res Lett 37. doi: 10.1029/2010GL045229
  28. Munekane H, Matsuzaka S (2004) Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region. Geophys Res Lett 31. doi: 10.1029/2004GL019773
  29. Nordman M, Mäkinen J, Virtanen H, Johansson J, Bilker-Koivula M, Virtanen J (2009) Crustal loading in vertical GPS time series in Fennoscanndia. J Geodyn 48. doi: 10.1016/j.jog.2009.09.003
  30. Penna NT, King MA, Stewart MP (2007) GPS height time series: short period origins of spurious long period signals. J Geophys Res 111. doi: 10.1029/2005JB004047
  31. Petit G, Luzum B (eds) (2010) IERS conventions 2010. IERS technical note, 36. Verlag des Bundesamts für Kartographie und GeodŠsie, Frankfurt am Main. Paperback, in printGoogle Scholar
  32. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109. doi: 10.1029/2003JB002500
  33. Ponte RM (1999) A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. J Geophys Res 104. doi: 10.1029/1998JC900028
  34. Ponte R, Quinn K (2009) Bottom pressure changes around Antarctica and wind-driven meridional flows. Geophys Res Lett 36. doi: 10.1029/2009GL039060
  35. Ponte R, Quinn K, Wunsch C, Heimbach P (2007) A comparison of model and GRACE estimates of the large-scale seasonal cycle in ocean bottom pressure. Geophys Res Lett 34. doi: 10.1029/2007GL029599
  36. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, vol 1, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  37. Quinn KJ, Ponte RM (2011) Estimating high frequency ocean bottom pressure variability. Geophys Res Lett 38. doi: 10.1029/2010GL046537
  38. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. American Geophysics Union, Geophys Monogr Ser 15: 247251Google Scholar
  39. Scherneck H-G, Johansson JM, Koivula H, van Dam T, Davis JL (2002) Vertical crustal motion observed in the BIFROST project. J Geodyn 35: 425–441CrossRefGoogle Scholar
  40. Schuh H, Easterman G, Cretaux J-F, Berge-Nguyen M, van Dam T (2003) Investigation of hydrological and atmospheric loading by space geodetic techniques. In: Hwang C, Shum C-K, Li JC (eds) IAG Symposia, 126. International Workshop on Satellite Altimetry for Geodesy, Geophysics and Oceanography. Springer, Berlin, pp 123–132Google Scholar
  41. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83. doi: 10.1007/s00190-009-0311-8
  42. Stepanov VN, Hughes CW (2006) Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. J Geophys Res 111: C12002. doi: 10.1029/2005JC003450 CrossRefGoogle Scholar
  43. Tesmer V, Steigenberger P, van Dam T, Mayer-Gurr T (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85. doi: 10.1007/s00190-010-0437-8
  44. Thomas M (2002) Ocean induced variations of Earth’s rotation—results from a simultaneous model of global circulation and tides. PhD dissertation, University of Hamburg, GermanyGoogle Scholar
  45. Tizzani P, Berardino P, Casu F, Euillades P, Manzo M, Ricciardi GP, Zeni G, Lanari R (2007) Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens Envirn 108. doi: 10.1016/j.rse.2006.11.015
  46. Tregoning P, Herring T.A (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33. doi: 10.1029/2006GL027706
  47. Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114: B09403. doi: 10.1029/2009JB006344 CrossRefGoogle Scholar
  48. Tregoning P, Watson C (2011) Correction to “Atmospheric effects and spurious signals in GPS analyses”. J Geophys Res 116: B02412. doi: 10.1029/2010JB008157 CrossRefGoogle Scholar
  49. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36: L15401. doi: 10.1029/2009GL038718 CrossRefGoogle Scholar
  50. van Dam TM, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99: 4505–4518CrossRefGoogle Scholar
  51. van Dam TM, Wahr J (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92: 1281–1286CrossRefGoogle Scholar
  52. van Dam TM, Blewitt G, Heflin M (1994) Detection of atmospheric pressure loading using the global positioning system. J Geophys Res 99: 23,939–23,950Google Scholar
  53. van Dam TM, Wahr J, Chao Y, Leuliette E (1997) Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophys J Int 129: 507–517CrossRefGoogle Scholar
  54. van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson K et al (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28: 651–654CrossRefGoogle Scholar
  55. van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112: B03404. doi: 10.1029/2006JB004335 CrossRefGoogle Scholar
  56. van Dam T, Altamimi Z, Collilieux X, Ray J (2010) Topographically induced height errors in predicted atmospheric loading effects. J Geophys Res 115: B07415. doi: 10.1029/2009JB006810 CrossRefGoogle Scholar
  57. van Dam TM, Collilieux X, Rebischung P, Ray J, Altamimi Z (2011) Quantifying load model errors by comparison to a global GPS time series solution. Abstract, Fall American Geophysical Union, San FranciscoGoogle Scholar
  58. Virtanen J, Mäkinen J, Bilker-Koivula M, Virtanen H, Nordman M, Kangas A, Johansson M, Shum CK, Lee H, Wang L, Thomas M (2010) Baltic sea mass variations from GRACE: Comparison with in situ modelled sea level heights. In: Mertikas M (ed) Gravity, geoid and Earth observation. International Association of Geodesy Symposia 135 Springer, Berlin, pp 571–577. doi: 0.1007/978-3-642-10634-7_76
  59. Williams S (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76: 483–494. doi: 10.1007/s00190-002-0283-4 CrossRefGoogle Scholar
  60. Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett 38: L09314. doi: 10.1029/2011GL046940 CrossRefGoogle Scholar
  61. Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111. doi: 10.1029/2005JB004100
  62. Yan H, Chen W, Zhu Y, Zhan W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36. doi: 10.1029/2009GL038152
  63. Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichini F, Schwahn W (2004) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192(267-279): 192–267279Google Scholar
  64. Zlotnicki V, Wahr J, Fukumori I, Song Y (2007) Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE. J Phys Oceanogr 37. doi: 10.1175/JPO3009.1

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • T. van Dam
    • 1
    Email author
  • X. Collilieux
    • 2
  • J. Wuite
    • 1
  • Z. Altamimi
    • 2
  • J. Ray
    • 3
  1. 1.Faculty of Science, Technology, and Communication, Research Unit of Engineering SciencesUniversity of LuxembourgLuxembourgLuxembourg
  2. 2.Institut Géographique National (IGN)/Laboratoire de Recherche en Godsie (LAREG) and Groupe de Recherche en Géodésie spatiale (GRGS)Champs-sur-MarneFrance
  3. 3.NOAA National Geodetic SurveySilver SpringUSA

Personalised recommendations