Journal of Geodesy

, Volume 86, Issue 7, pp 565–575 | Cite as

Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden

  • T. NingEmail author
  • R. Haas
  • G. Elgered
  • U. Willén


We present comparisons of 10-year-long time series of the atmospheric zenith wet delay (ZWD), estimated using the global positioning system (GPS), geodetic very long baseline interferometry (VLBI), a water vapour radiometer (WVR), radiosonde (RS) observations, and the reanalysis product of the European Centre for Medium-Range Weather Forecasts (ECMWF). To compare the data sets with each other, a Gaussian filter is applied. The results from 10 GPS–RS comparisons using sites in Sweden and Finland show that the full width at half maximum at which the standard deviation (SD) is a minimum increases with the distance between each pair. Comparisons between three co-located techniques (GPS, VLBI, and WVR) result in mean values of the ZWD differences at a level of a few millimetres and SD of less than 7 mm. The best agreement is seen in the GPS–VLBI comparison with a mean difference of −3.4 mm and an SD of 5.1 mm over the 10-year period. With respect to the ZWD derived from other techniques, a positive bias of up to ~7 mm is obtained for the ECMWF reanalysis product. Performing the comparisons on a monthly basis, we find that the SD including RS or ECMWF varies with the season, between 3 and 15 mm. The monthly SD between GPS and WVR does not have a seasonal signature and varies from 3 to 7 mm.


Zenith wet delay GPS Radiosonde VLBI Water vapour radiometer ECMWF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi: 10.1029/2005JB003629 CrossRefGoogle Scholar
  2. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20: 1593–1607. doi: 10.1029/RS020i006p01593 CrossRefGoogle Scholar
  3. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape. J Geod 83: 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  4. Elgered G (1993) Tropospheric radio path delay from ground-based microwave radiometry. In: Atmospheric remote sensing by microwave radiometry. Wiley, New York, pp 215–258Google Scholar
  5. Elgered G, Jarlemark POJ (1998) Ground-based microwave radiometry and long-term observations of atmospheric water vapor. Radio Sci 33: 707–717. doi: 10.1029/98RS00488 CrossRefGoogle Scholar
  6. Gradinarsky LP, Johansson JM, Bouma HR, Scherneck H-G, Elgered G (2002) Climate monitoring using GPS. Phys Chem Earth 27: 335–340. doi: 10.101/S1474-7065(02)00009-8 CrossRefGoogle Scholar
  7. Haas R, Elgered G, Gradinarsky L Johansson J (2003) Assessing long term trends in the atmospheric water vapor content by combining data fromVLBI, GPS, radiosondes and microwave radiometry. In: Schwegmann W, Thorandt V (eds) In: Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Leipzig, pp 279–288Google Scholar
  8. Hill EM, Davis JL, Elósegui P, Wernicke BP, Malikowski E, Niemi NA (2009) Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada. J Geophys Res 114: B11402. doi: 10.1029/2008JB006027 CrossRefGoogle Scholar
  9. Jarlemark POJ, Emardson TR, Johansson JM (1998) Wet delay variability calculated from radiometric measurements and its role in space geodetic parameter estimation. Radio Sci 33: 719–730. doi: 10.1029/98RS00551 CrossRefGoogle Scholar
  10. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5): 394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  11. Ma C, Sauber JM, Clark TA, Ryan JW, Bell JJ, Gordon D, Himwich WE (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res 95: 21991–22011. doi: 10.1029/91JB01417 CrossRefGoogle Scholar
  12. McCarthy DD, Petit G (2004) IERS Conventions (2003). IERS Technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  13. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101: 3227–3246. doi: 10.1029/95JB03048 CrossRefGoogle Scholar
  14. Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Oceanic Technol 18: 830–850. doi: 10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO:2 CrossRefGoogle Scholar
  15. Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signal in VLBI observations. J Geophys Res 109: B03405. doi: 10.1029/2003JB002500 CrossRefGoogle Scholar
  16. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107: 13–34. doi: 10.1007/BF02521844 CrossRefGoogle Scholar
  17. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81: 781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  18. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79: 613–623. doi: 10.1007/s00190-005-0010-z CrossRefGoogle Scholar
  19. Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81: 503–514. doi: 10.1007/s00190-006-0124-y CrossRefGoogle Scholar
  20. Thomas ID, King MA, Clarke PJ, Penna NT (2011) Precipitable water vapor estimates from homogeneously reprocessed GPS data: an intertechnique comparison in Antarctica. J Geophys Res 116. doi: 10.1029/2010JD013889
  21. Teke K, Boehm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haas R, Garcia-Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85:395–413. doi: 10.1007/s00190-010-0434-y Google Scholar
  22. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, daCosta Bechtold V, Fiorino M, Gibson JK, Woollen J (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131: 2961–3021. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  23. Wang J, Zhang L (2008) Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J Clim 21(10): 2218–2238. doi: 10.1175/2007JCLI1944.1 CrossRefGoogle Scholar
  24. Wang J, Zhang L, Dai A, Van Hove T, Van Baelen J (2007) A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J Geophys Res 112: D11107. doi: 10.1029/2006JD007529 CrossRefGoogle Scholar
  25. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys U 79(47): 579. doi: 10.1029/98EO00426 CrossRefGoogle Scholar
  26. Webb FH, Zumberge JF (1993) An introduction to the GIPSY/OASIS-II. JPL Publ. D-11088 Jet Propulsion Laboratory, PasadenaGoogle Scholar
  27. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi: 10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Earth and Space Sciences, Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden
  2. 2.Swedish Meteorological and Hydrological InstituteNorrköpingSweden

Personalised recommendations