Advertisement

Journal of Geodesy

, Volume 86, Issue 3, pp 193–207 | Cite as

Orbit determination of the Lunar Reconnaissance Orbiter

  • Erwan MazaricoEmail author
  • D. D. Rowlands
  • G. A. Neumann
  • D. E. Smith
  • M. H. Torrence
  • F. G. Lemoine
  • M. T. Zuber
Original Article

Abstract

We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50–100 m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from ~70 m to ~23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (~20 m with only the radiometric data, and ~14 m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

Keywords

Moon Orbit determination Gravity Altimetric crossover Geodesy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

190_2011_509_MOESM1_ESM.eps (6.8 mb)
ESM 1 (PDF 6967 kb)
190_2011_509_MOESM2_ESM.eps (718 kb)
ESM 2 (EPS 719 kb)
190_2011_509_MOESM3_ESM.eps (686 kb)
ESM 3 (EPS 687 kb)
190_2011_509_MOESM4_ESM.eps (674 kb)
ESM 4 (EPS 675 kb)
190_2011_509_MOESM5_ESM.eps (1.4 mb)
ESM 5 (EPS 1397 kb)
190_2011_509_MOESM6_ESM.eps (731 kb)
ESM 6 (EPS 731 kb)
190_2011_509_MOESM7_ESM.eps (714 kb)
ESM 7 (EPS 714 kb)
190_2011_509_MOESM8_ESM.eps (527 kb)
ESM 8 (EPS 527 kb)
190_2011_509_MOESM9_ESM.eps (508 kb)
ESM 9 (EPS 508 kb)
190_2011_509_MOESM10_ESM.eps (507 kb)
ESM 10 (EPS 507 kb)

References

  1. Acton CH (1996) Ancillary data services of NASA’s navigation and ancillary information facility. Planet Space Sci 44: 65–70. doi: 10.1016/0032-0633(95)00107-7 CrossRefGoogle Scholar
  2. Araki H, Tazawa S, Noda H, Ishihara Y, Goossens S, Sasaki S, Kawano N, Kamiya I, Otake H, Oberst J, Shum C (2009) Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323(5916): 897–900. doi: 10.1126/science.1164146 CrossRefGoogle Scholar
  3. Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov M, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern SA, Zuber M (2007) Lunar Reconnaissance Orbiter overview: the instrument suite and mission. Space Sci Rev. doi: 10.1007/s11214-007-9153-y
  4. Dickey JO, Bender PL, Faller JE, Newhall XX, Ricklefs RL, Ries JG, Shelus PJ, Veillet C, Whipple AL, Wiant JR, Williams JG, Yoder CF (1994) Lunar laser ranging: a continuing legacy of the Apollo program. Science 265: 482–490. doi: 10.1126/science.265.5171.482 CrossRefGoogle Scholar
  5. Floberghagen R, Visser P, Weischede F (1999) Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination. Adv Space Res 23(4): 733–738. doi: 10.1016/S0273-1177(99)00155-6 CrossRefGoogle Scholar
  6. Goosens S, Matsumoto K (2008) Lunar degree 2 potential Love number determination from satellite tracking data. Geophys Res Lett 35: L02204. doi: 10.1029/2007GL031960 CrossRefGoogle Scholar
  7. Goossens S, Matsumoto K, Liu Q, Kikushi F, Sato K, Hanada H, Ishihara Y, Noda H, Kawano N, Namiki N, Iwata T, Lemoine FG, Rowlands DD, Harada Y, Chen M (2011) Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J Geod 85(4): 205–228. doi: 10.1007/s00190-010-0430-2 CrossRefGoogle Scholar
  8. Houghton MB, Tooley CR, Saylor RS Jr (2007) Mission design and operations considerations for NASA’s Lunar Reconnaissance Orbiter. 58th International Astronautical Congress, Hyderabad, India. http://lunar.gsfc.nasa.gov/library/IAC-07-C1_7_06.pdf
  9. Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Co., London, p 124Google Scholar
  10. Konopliv AS, The Lunar Prospector Gravity Science Team (2000) LP150Q Spherical Harmonic Model. http://pds-geosciences.wustl.edu/lunar01/lp-l-rss-5-gravity-v1/lp_1001/sha/jgl150q1.sha (published 27 Nov. 2000)
  11. Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan D-N (2001) Recent gravity models as a result of the Lunar Prospector mission. Icarus 150: 1–18. doi: 10.1006/icar.2000.6573 CrossRefGoogle Scholar
  12. Lemoine FG, Smith DE, Zuber MT, Neumann GA, Rowlands DD (1997) GLGM-2: a 70th degree and order Lunar Gravity Model from Clementine and historical data. J Geophys Res 102(E7): 16339–16359. doi: 10.1029/97JE01418 CrossRefGoogle Scholar
  13. Lemoine FG, Smith DE, Rowlands DD, Zuber MT, Neumann GA, Chinn DS, Pavlis DE (2001) An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J Geophys Res 106: 23359–23376. doi: 10.1029/2000JE001426 CrossRefGoogle Scholar
  14. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 precise orbit determination using GPS, SLR, DORIS and altimeter data. Mar Geod 26(3-4): 399–421. doi: 10.1080/714044529 CrossRefGoogle Scholar
  15. Matsumoto K, Goossens S, Ishihara Y, Liu Q, Kikuchi F, Iwata T, Namiki N, Noda H, Hanada H, Kawano N, Lemoine FG, Rowlands DD (2010) An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J Geophys Res 115: E06007. doi: 10.1029/2009JE003499 CrossRefGoogle Scholar
  16. Mazarico E, Zuber MT, Lemoine FG, Smith DE (2009) Effects of self-shadowing on nonconservative force modeling for mars-orbiting spacecraft. J Spacecr Rockets 46(3): 662–669. doi: 10.2514/1.41679 CrossRefGoogle Scholar
  17. Mazarico E, Lemoine FG, Han S-C, Smith DE (2010) GLGM-3: a degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J Geophys Res 115: E05001. doi: 10.1029/2009JE003472 CrossRefGoogle Scholar
  18. Namiki N, Iwata T, Matsumoto K, Hanada H, Noda H, Goossens S, Ogawa M, Kawano N, Asari K, Tsuruta S, Ishihara Y, Liu Q, Kikuchi F, Ishikawa T, Sasaki S, Aoshima C, Kurosawa K, Sugita S, Takano T (2009) Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323: 900–905. doi: 10.1126/science.1168029 CrossRefGoogle Scholar
  19. Neumann GA, Mazarico E, Smith DE, Zuber MT, Gläser P (2011) Lunar Orbiter Laser Altimeter measures of slope and roughness. Lunar and Planetary Science Conference XXXXII. The Woodlands, TX (abstract 2313)Google Scholar
  20. Nozette S, Spudis P, Bussey B, Jensen R, Raney K, Winters H, Lichtenberg CL, Marinelli W, Crusan J, Gates M, Robinson M (2010) The Lunar Reconnaissance Orbiter miniature radio frequency (Mini-RF) technology demonstration. Space Sci Rev 150: 285–302. doi: 10.1007/s11214-009-9607-5 CrossRefGoogle Scholar
  21. Paige DA, Foote MC, Greenhagen BT, Schofield JT, Calcutt S, Vasavada AR, Preston DJ, Taylor FW, Allen CC, Snook KJ, Jakosky BM, Murray BC, Soderblom LA, Jau B, Loring S, Bulharowski J, Bowles NE, Thomas IR, Sullivan MT, Avis C, De Jong EM, Hartford W, McClees DJ (2010) The Lunar Reconnaissance Orbiter diviner lunar radiometer experiment. Space Sci Rev 150: 125–160. doi: 10.1007/s11214-009-9529-2 CrossRefGoogle Scholar
  22. Pavlis DE, Poulose SG, McCarthy JJ (2006) GEODYN operations manuals. Contractor Report, SGT Inc., Greenbelt, MarylandGoogle Scholar
  23. Robinson MS, Brylow SM, Tschimmel M, Humm D, Lawrence SJ, Thomas PC, Denevi BW, Bowman-Cisneros E, Zerr J, Ravine MA, Caplinger MA, Ghaemi FT, Schaffner JA, Malin MC, Mahanti P, Bartels A, Anderson J, Tran TN, Eliason EM, McEwen AS, Turtle E, Jolliff BL, Hiesinger H (2010) Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci Rev 150: 81–124. doi: 10.1007/s11214-010-9634-2 CrossRefGoogle Scholar
  24. Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Lutchke SB (1999) The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys Res Lett 26: 1191–1194. doi: 10.1029/1999GL900223 CrossRefGoogle Scholar
  25. Rowlands DD, Lemoine FG, Chinn DS, Luthcke SB (2009) A simulation study of multi-beam altimetry for lunar reconnaissance orbiter and other planetary missions. J Geod 83(8): 709–721. doi: 10.1007/s00190-008-0285-y CrossRefGoogle Scholar
  26. Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, McGovern PJ, Abshire JB, Afzal RS, Sun X (2001) Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J Geophys Res 106: 23689–23722. doi: 10.1029/2000JE001364 CrossRefGoogle Scholar
  27. Smith DE, Zuber MT, Jackson GB, Cavanaugh JF, Neumann GA, Riris H, Sun X, Zellar RS, Coltharp C, Connelly J, Katz RB, Kleyner I, Liiva P, Matuszeski A, Mazarico E, McGarry J, Novo-Gradac A-M, Ott MN, Peters C, Ramos-Izquierdo LA, Ramsey L, Rowlands DD, Schmidt S, Scott VS, Shaw GB, Smith JC, Swinski J-P, Torrence MH, Unger G, Yu AW, Zagwodzki TW (2009) The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci Rev 150: 209–241. doi: 10.1007/s11214- 009-9512-y CrossRefGoogle Scholar
  28. Smith DE, Zuber MT, Neumann GA, Lemoine FG, Mazarico E, Torrence MH, McGarry JF, Rowlands DD, Head JW, Duxbury TH, Aharonson O, Lucey PG, Robinson MS, Barnouin OS, Cavanaugh JF, Sun X, Liiva P, Mao D-D, Smith JC, Bartels AE (2010) Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys Res Lett 37: L18204. doi: 10.1029/2010GL043751 CrossRefGoogle Scholar
  29. Smith DE, Zuber MT, Phillips RJ, Solomon SC, Neumann GA, Lemoine FG, Peale SJ, Margot J-L, Torrence MH, Talpe MJ, Head JW, Hauck SA, Johnson CL, Perry ME, Barnouin OS, McNutt RL, Oberst J (2010) The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2. Icarus 209(1): 88–100. doi: 10.1016/j.icarus.2010.04.007 CrossRefGoogle Scholar
  30. Vondrak R, Keller J, Chin G, Garvin J (2010) Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci Rev 150: 7–22. doi: 10.1007/s11214-010-9631-5 CrossRefGoogle Scholar
  31. Williams JG, Newhall XX, Dickey JO (1987) Lunar gravitational harmonics and reflector coordinates. In: Holota P (ed) Proceedings of the international symposium on figure and dynamics of the Earth, Moon and Planets. Astronomical Institute of the Czechoslovak Academy of Sciences, Prague, pp 643–648Google Scholar
  32. Williams JG, Boggs DH, Folkner WM (2008) DE421 Lunar Orbit, Physical Librations, and Surface Coordinates. JPL Memorandum IOM 335-JW,DB,WF-20080314-001. March 14, ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf, ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de421_lunar_ephemeris_and_orientation.pdf
  33. Williams JG, Boggs DH, Ratcliff JT (2009) A larger lunar core? In: Lunar and Planetary Science Conference XXXX, The Woodlands, TX (abstract 1452)Google Scholar
  34. Williams JG, Boggs DH, Ratcliff JT (2011) Lunar moment of inertia and love number. In: Lunar and Planetary Science Conference XXXXII, The Woodlands, TX, (abstract 2610)Google Scholar
  35. Zuber MT, Smith DE, Solomon SC, Muhleman DO, Head JW, Garvin JB, Abshire JB, Bufton JL (1992) The Mars Observer Laser Altimeter investigation. J Geophys Res 97: 7781–7797CrossRefGoogle Scholar
  36. Zuber MT, Smith DE, Zellar RS, Neumann GA, Sun X, Katz RB, Kleyner I, Matuszeski A, McGarry JF, Ott MN, Ramos-Izquierdo LA, Rowlands DD, Torrence MH, Zagwodzki TW (2010) The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci Rev 150: 63–80. doi: 10.1007/s11214-009-9511-z CrossRefGoogle Scholar
  37. Zuber MT, Smith DE, Watkins MM, Lehman DH, Hoffman TL, Asmar SW, Konopliv AS, Lemoine FG, Melosh HJK, Neumann GA, Phillips RJ, Solomon SC, Wieczorek MA, Williams JG (2011) Gravity Recovery and Interior Laboratory (GRAIL) mission and science objectives. Space Sci Rev (submitted)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Erwan Mazarico
    • 1
    • 2
    Email author
  • D. D. Rowlands
    • 2
  • G. A. Neumann
    • 2
  • D. E. Smith
    • 1
    • 2
  • M. H. Torrence
    • 2
    • 3
  • F. G. Lemoine
    • 2
  • M. T. Zuber
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.NASA Goddard Space Flight CenterPlanetary Geodynamics LaboratoryGreenbeltUSA
  3. 3.S.G.T. Inc.GreenbeltUSA

Personalised recommendations