Journal of Geodesy

, 85:777 | Cite as

GOCE gravitational gradiometry

  • Reiner Rummel
  • Weiyong YiEmail author
  • Claudia Stummer
Original Article


GOCE is the first gravitational gradiometry satellite mission. Gravitational gradiometry is the measurement of the second derivatives of the gravitational potential. The nine derivatives form a 3 × 3 matrix, which in geodesy is referred to as Marussi tensor. From the basic properties of the gravitational field, it follows that the matrix is symmetric and trace free. The latter property corresponds to Laplace equation, which gives the theoretical foundation of its representation in terms of spherical harmonic or Fourier series. At the same time, it provides the most powerful quality check of the actual measured gradients. GOCE gradiometry is based on the principle of differential accelerometry. As the satellite carries out a rotational motion in space, the accelerometer differences contain angular effects that must be removed. The GOCE gradiometer provides the components V xx , V yy , V zz and V xz with high precision, while the components V xy and V yz are of low precision, all expressed in the gradiometer reference frame. The best performance is achieved inside the measurement band from 5 × 10–3 to 0.1 Hz. At lower frequencies, the noise increases with 1/f and is superimposed by cyclic distortions, which are modulated from the orbit and attitude motion into the gradient measurements. Global maps with the individual components show typical patterns related to topographic and tectonic features. The maps are separated into those for ascending and those for descending tracks as the components are expressed in the instrument frame. All results are derived from the measurements of the period from November to December 2009. While the components V xx and V yy reach a noise level of about \({10\;\rm{\frac{mE}{\sqrt{Hz}}}}\), that of V zz and V xz is about \({20\; \rm{\frac{mE}{\sqrt{Hz}}}}\). The cause of the latter’s higher noise is not yet understood. This is also the reason why the deviation from the Laplace condition is at the \({20 \;\rm{\frac{mE}{\sqrt{Hz}}}}\) level instead of the originally planned \({11\;\rm{\frac{mE}{\sqrt{Hz}}}}\). Each additional measurement cycle will improve the accuracy and to a smaller extent also the resolution of the spherical harmonic coefficients derived from the measured gradients.


Satellite gradiometry Gravity gradiometry GOCE Gravity field 


  1. Balmino G, Barlier F, Bernard A, Bouzat C, Riviere G, Runavot J (1981) GRADIO gradiométrie par satellite. ToulouseGoogle Scholar
  2. Baur O (2007) Die Invariantendarstellung in der Satellitengradiometrie: theoretische Betrachtungen und numerische Realisierung anhand der Fallstudie GOCE. PhD thesis, Universität StuttgartGoogle Scholar
  3. Baur O, Sneeuw N, Grafarend EW (2007) Methodology and use of tensor invariants for satellite gravity gradiometry. J Geod 82(4–5): 279–293. doi: 10.1007/s00190-007-0178-5 Google Scholar
  4. Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning CC, Veicherts M, Visser P (2011) GOCE gravitational gradients along the orbit. J Geod. doi: 10.1007/s00190-011-0464-0
  5. Brockmann J, Kargoll B, Krasbutter I, Schuh WD, Wermuth M (2010) GOCE data analysis: from calibrated measurements to the global earth gravity field. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space Techniques. Springer, Berlin, pp 213–229. doi: 10.1007/978-3-642-10228-8_17 CrossRefGoogle Scholar
  6. Carroll J, Savet P (1959) Gravity difference detection. Aerosp Eng:44–47Google Scholar
  7. Cesare S (2008) GOCE—Performance requirements and budgets for the gradiometrc mission. project report, ThalesAleniaSpace, TorinoGoogle Scholar
  8. Chan HA, Moody MV, Paik HJ (1987) Superconducting gravity gradiometer for sensitive gravity measurements. II. experiment. Phys Rev D 35(12): 3572. doi: 10.1103/PhysRevD.35.3572 CrossRefGoogle Scholar
  9. Emiliani C (1992) Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press, CambridgeGoogle Scholar
  10. Eötvös RV (1906) Bestimmung der Gradienten der Schwerkraft und ihrer Niveauflächen mit Hilfe der Drehwaage. vol 1. Verhandlungen der 15. allgemeinen Konferenz der Internationalen Erdmessung, Budapest, pp 337–396Google Scholar
  11. European Space Agency (1999) Gravity field and steady-state ocean circulation mission, report for mission selection of the four candidate earth explorer missions. Tech. rep., ESA SP-1233(1), ESA publications division, NoordwijkGoogle Scholar
  12. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B (2011) Mission design, operation and exploitation of the Gravity field and steady-state Ocean Circulation Explorer. J Geod. doi: 10.1007/s00190-011-0498-3
  13. Forward RL (1974) Review of artificial satellite gravity gradiometer techniques for geodesy. In: Veis G (ed) The Use of Artificial Satellites for Geodesy and Geodynamics. The National Technical University of Athens, Athens, pp 157–192Google Scholar
  14. Gruber T, Abrikosov O, Hugentobler U (2010a) GOCE Standards. GO-TN-HPF-GS-0111, Issue 3.2Google Scholar
  15. Gruber T, Rummel R, Abrikosov O, van Hees R (2010b) GOCE Level 2 product data handbook. GO-MA-HPF-GS-0110, Issue 4.2Google Scholar
  16. Jekeli C (1988) The gravity gradiometer survey system (GGSS). Eos, Trans Am Geophys Union 69(8):105 & 116–117Google Scholar
  17. Johannessen JA, Balmino G, Provost CL, Rummel R, Sabadini R, Sünkel H, Tscherning C, Visser P, Woodworth P, Hughes C, Legrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: Its impact on geophysics. Surv Geophys 24(4):339–386. doi: 10.1023/B:GEOP.0000004264.04667.5e,
  18. Jung K (1961) Schwerkraftverfahren in der angewandten Geophysik. Akademische Verlags Gesellschaft, LeipzigGoogle Scholar
  19. Lühr H, Rentz S, Ritter P, Liu H, Häusler K (2007) Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann Geophys 25: 1093–1101CrossRefGoogle Scholar
  20. Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77(1–2): 41–49. doi: 10.1007/s00190-002-0288-z CrossRefGoogle Scholar
  21. Marussi A (1985) Intrinsic geodesy. Translated from the Italian by Reilly WI. Springer, BerlinGoogle Scholar
  22. McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA (2002) Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65(3):033,608, doi: 10.1103/PhysRevA.65.033608
  23. Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, KarlsruheGoogle Scholar
  24. Müller J, Jarecki F, Wolf I, Brieden P (2010) Quality evaluation of GOCE gradients. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space Techniques. Springer, Berlin., pp 265–276. doi: 10.1007/978-3-642-10228-8_21 CrossRefGoogle Scholar
  25. Ohanian HC, Ruffini R (1994) Gravitation and spacetime, 2nd edn. Norton & Company, New YorkGoogle Scholar
  26. Oppenheim AV, Schafer RW (1989) Digital signal processing. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  27. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò; F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod. doi: 10.1007/s100190-011-0467-x
  28. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008, Presented to EGU-2008, Vienna, AustriaGoogle Scholar
  29. Pedersen LB, Rasmussen TM (1990) The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics 55(12): 1558–1566. doi: 10.1190/1.1442807 CrossRefGoogle Scholar
  30. Rummel R (1986) Satellite gradiometry. In: Sünkel H (eds) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences,7. Springer, Berlin, pp 317–363. doi: 10.1007/BFb0010135 Google Scholar
  31. Rummel R (1997) Spherical spectral properties of the earth’s gravitational potential and its first and second derivatives. In: Sansò; F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in earth sciences, vol 65. Springer, Berlin, pp 359–404. doi: 10.1007/BFb0011710 CrossRefGoogle Scholar
  32. Rummel R, Rapp R (1976) The influence of the atmosphere on geoid and potential coefficient determinations from gravity data. J Geophys Res 81(32): 5639–5642. doi: 10.1029/JB081i032p05639 CrossRefGoogle Scholar
  33. Rummel R, van Gelderen M (1992) Spectral analysis of the full gravity tensor. Geophys J Int 111(1): 159–169. doi: 10.1111/j.1365-246X.1992.tb00562.x CrossRefGoogle Scholar
  34. Schreiner M (1994) Tensor spherical harmonics and their application in satellite gradiometry. PhD thesis, University of KaiserslauternGoogle Scholar
  35. Schuh WD (2002) Improved modeling of SGG-data sets by advanced filter strategies. In: ESA-Project (ed): ESA-Project “From Eötvös to mGal+”, WP 2, Final-ReportGoogle Scholar
  36. Stummer C, Fecher T, Pail R (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geod. doi: 10.1007/s00190-011-0461-3
  37. Tsuboi C (1983) Gravity. George Allen & Unwin, LondonGoogle Scholar
  38. Watson D (1992) Contouring: a guide to the analysis and display of spatial sata, 1st edn. Pergamon, OxfordGoogle Scholar
  39. Wells W (1984) Spaceborne gravity gradiometers. In: Proc. NASA GSFC workshop, NASA conference publication 2305Google Scholar
  40. While J, Jackson A, Smit D, Biegert E (2006) Spectral analysis of gravity gradiometry profiles. Geophysics 71(1): J11–J22. doi: 10.1190/1.2169848 CrossRefGoogle Scholar
  41. Yu J, Zhao D (2010) The gravitational gradient tensor’s invariants and the related boundary conditions. Sci China Earth Sci 53(5): 781–790. doi: 10.1007/s11430-010-0014-2 CrossRefGoogle Scholar
  42. Yu N, Kohel J, Kellogg J, Maleki L (2006) Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl Phys B 84(4): 647–652. doi: 10.1007/s00340-006-2376-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Astronomische and Physikalische Geodäsie (IAPG)Technische Universität MünchenMunichGermany

Personalised recommendations