Journal of Geodesy

, Volume 86, Issue 2, pp 81–98 | Cite as

Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites

Original Article

Abstract

Future satellite missions dedicated to measuring time-variable gravity will need to address the concern of temporal aliasing errors; i.e., errors due to high-frequency mass variations. These errors have been shown to be a limiting error source for future missions with improved sensors. One method of reducing them is to fly multiple satellite pairs, thus increasing the sampling frequency of the mission. While one could imagine a system architecture consisting of dozens of satellite pairs, this paper explores the more economically feasible option of optimizing the orbits of two pairs of satellites. While the search space for this problem is infinite by nature, steps have been made to reduce it via proper assumptions regarding some parameters and a large number of numerical simulations exploring appropriate ranges for other parameters. A search space originally consisting of 15 variables is reduced to two variables with the utmost impact on mission performance: the repeat period of both pairs of satellites (shown to be near-optimal when they are equal to each other), as well as the inclination of one of the satellite pairs (the other pair is assumed to be in a polar orbit). To arrive at this conclusion, we assume circular orbits, repeat groundtracks for both pairs of satellites, a 100-km inter-satellite separation distance, and a minimum allowable operational satellite altitude of 290 km based on a projected 10-year mission lifetime. Given the scientific objectives of determining time-variable hydrology, ice mass variations, and ocean bottom pressure signals with higher spatial resolution, we find that an optimal architecture consists of a polar pair of satellites coupled with a pair inclined at 72°, both in 13-day repeating orbits. This architecture provides a 67% reduction in error over one pair of satellites, in addition to reducing the longitudinal striping to such a level that minimal post-processing is required, permitting a substantial increase in the spatial resolution of the gravity field products. It should be emphasized that given different sets of scientific objectives for the mission, or a different minimum allowable satellite altitude, different architectures might be selected.

Keywords

Time variable gravity GRACE Temporal aliasing errors Constellations Satellite geodesy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender PL, Hall JL, Ye J, Klipstein WM (2003) Satellite-satellite laser links for future gravity missions. Space Sci Rev 108: 377–384CrossRefGoogle Scholar
  2. Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international symposium on formation flying, missions and technologies. ESA/ESTEC, Noordwijk, pp 1–6Google Scholar
  3. Bruinsma S, Lemoine JM, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45: 587–601CrossRefGoogle Scholar
  4. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing. Geophys Res Lett 30(6): 1275. doi:10.1029/2002GL016473 CrossRefGoogle Scholar
  5. Center for Space Research (2011) GRACE orbital configuration. http://www.csr.utexas.edu/grace/operations/configuration.html
  6. Colombo O (1984) The global mapping of gravity with two satellites. Tech. Rep. 3, Netherlands, Geodetic Commission, Publications on Geodesy, New SeriesGoogle Scholar
  7. Drinkwater M, Haagmans R, Muzzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core explorer. In: Proceedings of the Third GOCE User Workshop. Frascati, Italy, ESA SP-627, pp 1–7Google Scholar
  8. Elsaka B (2010) Simulated satellite formation flights for detecting temporal variations of the earth’s gravity field. PhD thesis, University of BonnGoogle Scholar
  9. Fehringer M, Floberghagen R, Muzi D, Steiger C, Pineiro J (2010) Abstract G33B-01 presented at 2010 Fall Meeting AGU. San FranciscoGoogle Scholar
  10. Flechtner F (2007) AOD1B product description document for product releases 01 to 04. University of Texas at Austin, GRACE 327-750, CSR Publ. GR-GFZ-AOD-0001 Rev. 3.1, 43 pGoogle Scholar
  11. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GFZ/GRGS satellite and combined gravity field models EIGEN-GL04S1 and EIGEN-GL04C. J Geodesy 82(6): 331–346. doi:10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  12. Han SC, Ditmar P (2008) Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J Geodesy 82: 423–430. doi:10.1007/s00190-007-0194-5 CrossRefGoogle Scholar
  13. Han SC, Simons FJ (2008) Spatiospectral localization of global geopotential fields from the gravity recovery and climate experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake. J Geophys Res 113:B01405. doi:10.1029/2007JB004927
  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–470CrossRefGoogle Scholar
  15. Kaula WM (1966) Theory of Satellite Geodesy. Blaisdell Publishing Company, WalthamGoogle Scholar
  16. Klinker E, Rabier F, Kelly G, Mahfouf JF (2000) The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Q J R Meteorol Soc 126(564):1191–1215Google Scholar
  17. Klokočník J, Wagner CA, Kostelecký J, Bezděk A, Novák P, McAdoo D (2008) Variations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE. J Geodesy 82: 917–927CrossRefGoogle Scholar
  18. Loomis B (2009) Simulation study of a follow-on gravity mission to GRACE, PhD thesis, University of Colorado, BoulderGoogle Scholar
  19. Lyard F, Lefèvre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics 56: 394–415. doi:10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  20. Marchetti P, Blandino JJ, Demetriou MA (2008) Electric propulsion and controller design for drag-free spacecraft operation. J Spacecraft Rockets 45(6): 1303–1315. doi:10.2514/1.36307 CrossRefGoogle Scholar
  21. Mueller G, Thorpe I, Mcnamara P, Camp J (2005) Laser frequency stabilization for LISA. NASA/TM-2005-212794, NASA Goddard Space Flight CenterGoogle Scholar
  22. Pavlis DE, Deng C, McCarthy JJ (2010) GEODYN operations manual. Contractor report, SGT, Inc., GreenbeltGoogle Scholar
  23. Pierce R, Leitch J, Stephens M, Bender P, Nerem R (2008) Intersatellite range monitoring using optical interferometry. Appl Opt 47:5007–5019Google Scholar
  24. Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA technical memorandum 209478, Goddard Space Flight CenterGoogle Scholar
  25. Rodell M, House P, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85: 381–394. doi:10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  26. Rosborough GW, Tapley BD (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celestial Mech 40: 409–421CrossRefGoogle Scholar
  27. Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a gravity mapping mission. J Geodesy 76: 307–316. doi:10.1007/s00190-002-0255-8 CrossRefGoogle Scholar
  28. Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48: 504–536. doi:10.1137/S0036144504445765 CrossRefGoogle Scholar
  29. St Rock B, Blandino JJ, Demetriou MA (2006) Propulsion requirements for drag-free operation of spacecraft in Low Earth Orbit. J Spacecraft Rockets 43(3): 594–606. doi:10.2514/1.15819 CrossRefGoogle Scholar
  30. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9): 2193. doi:10.1029/2001JB000576 CrossRefGoogle Scholar
  31. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285
  32. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004a) Grace measurements of mass variability in the earth system. Science 305: 503–505. doi:10.1126/science.1099192 CrossRefGoogle Scholar
  33. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  34. Ullman R (1997) SOLVE program mathematical formulation. Rep. HSTX- G and G-9201Google Scholar
  35. Vallado DA (2001) Fundamentals of astrodynamics and applications: second edition. Microcosm Press and Kluwer Academic Publishers, El SegundoGoogle Scholar
  36. van Dam T, Visser P, Sneeuw N, Losch M, Gruber T, Bamber J, Bierkens M, King M, Smit M (2008) Monitoring and modelling individual sources of mass distributions and transport in the Earth system by means of satellites. Tech. rep., Final Report, ESA Contract 20403Google Scholar
  37. Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181(2): 789–805. doi:10.1111/j.1365-246X.2010.04557.x Google Scholar
  38. Visser PNAM, Schrama EJO, Sneeuw N, Weigelt M (2011) Dependency of resolvable gravitational spatial resolution on space-borne observation techniques. In: Kenyon S, Pacino MC, Marti U (eds) Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August – 4 September 2009. International Association of Geodesy Symposia, vol. 136. Springer, Heidelberg. ISBN 978-3-642-20337-4Google Scholar
  39. Wagner C, McAdoo D, Klokočník J, Kostelecký J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geodesy 80: 94–103. doi:10.1007/s00190-006-0036-x CrossRefGoogle Scholar
  40. Wahr J, Molenaar M (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30205–30229CrossRefGoogle Scholar
  41. Wieczorek MA, Simons FJ (2005) Localized spectral analysis on the sphere. Geophys J Int 162: 655–675. doi:10.1111/j.1365-246X.2005.02687.x CrossRefGoogle Scholar
  42. Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geodesy 83: 569–581. doi:10.1007/s00190-008-0274-1 CrossRefGoogle Scholar
  43. Wiese DN, Visser PNAM, Nerem RS (2011) Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res. doi:10.1016/j.asr.2011.05.027
  44. Young BC, Cruz FC, Itano WM, Bergquist JC (1999) Visible lasers with subhertz linewidths. Phys Rev Lett 82(19): 3799–3802CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Colorado Center for Astrodynamics ResearchUniversity of Colorado at BoulderBoulderUSA
  2. 2.NASA Goddard Space Flight CenterPlanetary Geodynamics LaboratoryGreenbeltUSA

Personalised recommendations