Journal of Geodesy

, Volume 85, Issue 11, pp 861–879 | Cite as

A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

  • P. Knudsen
  • R. Bingham
  • O. Andersen
  • Marie-Helene Rio
Original Article


The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an initial gravity model from GOCE, based on just 2 months of data, is combined with the recent DTU10MSS mean sea surface to construct a global mean dynamic topography (MDT) model. The GOCE MDT clearly displays the gross features of the ocean’s steady-state circulation. More significantly, the improved gravity model provided by the GOCE mission has enhanced the resolution and sharpened the boundaries of those features compared with earlier satellite only solutions. Calculation of the geostrophic surface currents from the MDT reveals improvements for all of the ocean’s major current systems. In the North Atlantic, the Gulf Stream is stronger and more clearly defined, as are the Labrador and the Greenland currents. Furthermore, the finer scale features, such as eddies, meanders and branches of the Gulf Stream and North Atlantic Current system are visible. Similar improvements are seen also in the North Pacific Ocean, where the Kuroshio and its extension are well represented. In the Southern hemisphere, both the Agulhas and the Brazil-Malvinas Confluence current systems are well defined, and in the Southern ocean the Antarctic Circumpolar Current appears enhanced. The results of this preliminary analysis, using an initial GOCE gravity model, clearly demonstrate the potential of the GOCE mission. Already, at this early stage of the mission, the resolution of the MDT has been improved and the estimated surface current speeds have been increased compared with a GRACE satellite-only MDT. Future GOCE gravity models are expected to build further upon this early success.


GOCE Dynamic ocean topography Ocean circulation Altimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114: C11001. doi: 10.1029/2008JC005179 CrossRefGoogle Scholar
  2. Andersen OB, Knudsen P, Berry P (2010) The DNSC08GRA global marine gravity field from satellite altimetry. J Geod 84(3). doi: 10.1007/s00190-009-0355-9
  3. Benveniste J, Knudsen P, and the GUTS Team (2007) The GOCE user toolbox. In: Fletcher K (ed) Proceedings of the 3rd international GOCE user workshop, 6–8 November 2006, Frascati, Italy. European Space Agency, NoordwijkGoogle Scholar
  4. Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462: 495–498CrossRefGoogle Scholar
  5. Bingham RJ, Haines K, Hughes CW (2008) Calculating the Ocean’s mean dynamic topography from a mean sea surface and a Geoid. J Atmos Ocean Tech 25: 1808–1822. doi: 10.1175/2008JTECHO568.1 CrossRefGoogle Scholar
  6. Bingham RJ, Knudsen P, Andersen O, Pail R (2010) Using GOCE to estimate the mean North Atlantic circulation (Invited). Abstract G33B-08 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13–17 DecGoogle Scholar
  7. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38: L01606. doi: 10.1029/2010GL045633 CrossRefGoogle Scholar
  8. Boebel O, Rae CD, Garzoli S, Lutjeharms J, Richardson P, Rossby T, Schmid C, Zenk W (1998) Float experiment studies interocean exchanges at the tip of Africa. EOS 79(1)7–8Google Scholar
  9. Bruinsma S, Marty J-C, Balmino G (2004) Numerical simulation of the gravity field recovery from GOCE mission data. In: Proceedings of the second international GOCE user workshop “GOCE, The Geoid and Oceanography”, 8–10 March 2004, ESA/ESRIN, Frascati, Italy (ESA SP-569, June 2004)Google Scholar
  10. Bryden HL, Beal LM, Duncan LM (2005) Structure and transport of the Agulhas Current and its temporal variability. J Oceanogr 61(3): 479–492CrossRefGoogle Scholar
  11. Chelton DB, Schlax MG, Witter DL, Richman JG (1990) GEOSAT altimeter observations of the surface circulation of the Southern Ocean. J Geophys Res 95: 17877–17903CrossRefGoogle Scholar
  12. Denker D, Rapp RH (1990) Geodetic and oceanographic results from the analysis of one year of geosat data. J Geophys Res 95(C8): 13151–13168CrossRefGoogle Scholar
  13. Donohue EA, Firing E, Beal L (2000) Comparison of the three velocity sections of the Agulhas current and the Agulhas undercurrent. J Geophys Res 105(C12): 28585–28593CrossRefGoogle Scholar
  14. Engelis T, Knudsen P (1989) Orbit improvement and determination of the oceanic geoid and topography from 17 days of Seasat Data. Manuscr Geod 14(3): 193–201Google Scholar
  15. Förste C, Flechtner F, Schmidt R, König R, Meyer U, Stubenvoll R, Rothacher M, Barthelmes F, Neumayer H, Biancale R, Bruinsma S, Lemoine J-M, Loyer S (2006) A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data—EIGEN-GL04C. Geophys Res Abstr 8: 03462Google Scholar
  16. Friocourt Y, Drijfhout S, Blanke B, Speich S (2005) Water mass export from Drake Passage to the Atlantic, Indian, and Pacific oceans: a Lagrangian model analysis. J Phys Oceanogr 35: 1206– 1222CrossRefGoogle Scholar
  17. Fu L-L, Cheng B, Qiu B (2001) 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/POSEIDON altimeter. J Phys Oceanogr 31: 506–517CrossRefGoogle Scholar
  18. Gould WJ (1985) Physical Oceanography of the Azores Front. Prog Oceanogr 14: 167–190CrossRefGoogle Scholar
  19. Hogg NG, Johns WE (1995) Western boundary currents. U.S. National Report to Internatonal Union of Geodesy and Geophysics 1991–1994. Suppl Rev Geophys 33: 1311–1334CrossRefGoogle Scholar
  20. Hughes CW, Bingham RJ (2008) An oceanographer’s guide to GOCE and the geoid. Ocean Sci 4(1): 15–29CrossRefGoogle Scholar
  21. Johannessen JA, Balmino G, Le Provost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P, Woodworth P, Hughes CW, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: impact in geophysics. Surv Geophys 24: 339–386CrossRefGoogle Scholar
  22. Knauss JA (1996) Introduction to physical oceanography, 2nd edn. Prentice-Hall, Englewood Cliffs, pp 152–156Google Scholar
  23. Knudsen P (1991) Simultaneous estimation of the gravity field and sea surface topography from satellite altimeter data by least squares collocation. Geophys J Int 104(2): 307–317CrossRefGoogle Scholar
  24. Knudsen P (1992) Estimation of sea surface topography in the Norwegian Sea using gravimetry and geosat altimetry. Bull Géodésique 66(1): 27–40CrossRefGoogle Scholar
  25. Knudsen P, Andersen OB, Forsberg R, Föh HP, Olesen AV, Vest AL, Solheim D, Omang OD, Hipkin R, Hunegnaw A, Haines K, Bingham R, Drecourt J-P, Johannessen JA, Drange H, Siegismund F, Hernandez F, Larnicol G, Rio M-H, Schaeffer P (2007) Combining altimetric/gravimetric and ocean model mean dynamic topography models in the GOCINA region. In: IAG symposia, vol 130. Springer. ISBN-10 3-540-49349-5, 3-10Google Scholar
  26. Levitus S, Boyer TP (1994) World ocean atlas 1994 volume 4: temperature NOAA Atlas NESDIS 117(4). National Ocean and Atmosphere Administration USAGoogle Scholar
  27. Manabe S, Stouffer RJ (1999) The role of thermohaline circulation in climate. Tellus Ser A 51(1): 91–109CrossRefGoogle Scholar
  28. Mann CR (1967) The termination of the Gulf Stream and the beginning of the North Atlantic Current. Deep-Sea Res 14: 337–359Google Scholar
  29. Marsh JG, Koblinsky CJ, Lerch FJ, Klosko SM, Martin TV, Robbins JW, Williamson RG, Patel GB (1990) Dymanic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of Seasat altimeter data. J Geophys Res 95(C8): 13129–13150CrossRefGoogle Scholar
  30. Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Tech 26(9): 1910–1919CrossRefGoogle Scholar
  31. Nerem RS, Tapley BD, Shum CK (1990) Determination of the ocean circulation using geosat altimetry. J Geophys Res 95(C3): 3163–3179CrossRefGoogle Scholar
  32. Niiler PP, Maximenko NA, McWilliams JC (2003) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30(22): 2164. doi: 10.1029/2003GL018628 CrossRefGoogle Scholar
  33. Rhines P, Hakkinen S, Josey S (2008) Is oceanic heat transport significant in the climate system?. In: Dickson RR, Meincke J, Rhines P (eds) Arctic–subarctic ocean fluxes, chap 4. Springer, New York, pp 87–109CrossRefGoogle Scholar
  34. Rio M-H, Hernandez F (2004) A mean dynamic topography computed over The world ocean from altimetry, in-situ measurements and a geoid model. J Geophys Res 109(C12)Google Scholar
  35. Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res 109: C05027. doi: 10.1029/2003JC002127 CrossRefGoogle Scholar
  36. Wagner CA (1986) Accuracy estimates of geoid and ocean topography recovered jointly from satellite altimetry. J Geophys Res 91(B1): 453–461CrossRefGoogle Scholar
  37. Woodgate RA, Fahrbach E, Rohardt G (1999) Structure and transports of the East Greenland Current at 75°N from moored current meters. J Geophys Res 104(C8): 18059–18072CrossRefGoogle Scholar
  38. Wunsch C, Zlotnicki V (1984) The accuracy of altimetric surfaces. Geophys J R Astr Soc 78: 795–808Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. Knudsen
    • 1
  • R. Bingham
    • 2
  • O. Andersen
    • 1
  • Marie-Helene Rio
    • 3
  1. 1.Technical University of Denmark, DTU SpaceCopenhagenDenmark
  2. 2.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.CLS, Space Oceanography DivisionRamonville-St-AgneFrance

Personalised recommendations