Advertisement

Journal of Geodesy

, 85:807 | Cite as

GPS-derived orbits for the GOCE satellite

  • Heike Bock
  • Adrian Jäggi
  • Ulrich Meyer
  • Pieter Visser
  • Jose van den IJssel
  • Tom van Helleputte
  • Markus Heinze
  • Urs Hugentobler
Original Article

Abstract

The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk–dawn orbit with an exceptionally low initial altitude of about 280 km. The onboard 12-channel dual-frequency GPS (Global Positioning System) receiver delivers 1 Hz data, which provides the basis for precise orbit determination (POD) for such a very low orbiting satellite. As part of the European GOCE Gravity Consortium the Astronomical Institute of the University of Bern and the Department of Earth Observation and Space Systems are responsible for the orbit determination of the GOCE satellite within the GOCE High-level Processing Facility. Both quick-look (rapid) and very precise orbit solutions are produced with typical latencies of 1 day and 2 weeks, respectively. This article summarizes the special characteristics of the GOCE GPS data, presents POD results for about 2 months of data, and shows that both latency and accuracy requirements are met. Satellite Laser Ranging validation shows that an accuracy of 4 and 7 cm is achieved for the reduced-dynamic and kinematic Rapid Science Orbit solutions, respectively. The validation of the reduced-dynamic and kinematic Precise Science Orbit solutions is at a level of about 2 cm.

Keywords

GOCE GPS Precise orbit determination SLR validation 

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophs Res 112(B9): 401–419. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Bigazzi A, Frommknecht B (2010) Note on GOCE instruments positioning. Issue 3.1. http://earth.esa.int/download/goce/GOCE-LRR-GPS-positioning-Memo_3.1_[XGCE-GSEG-EOPG-TN-09-0007v3.1].pdf
  3. Bock H (2004) Efficient methods for determining precise orbits of low Earth orbiters using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 65, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  4. Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10): 1638–1647. doi: 10.1016/j.asr.2007.02.053 CrossRefGoogle Scholar
  5. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11): 1083–1094. doi: 10.1007/s00190-009-0326-1 CrossRefGoogle Scholar
  6. Bock H, Jäggi A, Meyer U, Dach R, Beutler G (2011) Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Adv Space Res. 47(11): 1885–1893. doi: 10.1016/j.asr.2011.01.017 CrossRefGoogle Scholar
  7. Dach R (2009) Code analysis center down. IGS Mail No. 6033. IGS Central Bureau Information SystemGoogle Scholar
  8. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland. http://www.bernese.unibe.ch/docs/DOCU50.pdf, user manual
  9. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  10. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  11. Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The GOCE gravity mission: ESA’s first core explorer. In: Proceedings of the 3rd GOCE User Workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 1–7Google Scholar
  12. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10:EGU2008-A-03426Google Scholar
  13. Gerlach C, Földváry L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30(20): 2037. doi: 10.1029/2003GL018025 CrossRefGoogle Scholar
  14. Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 5(7):48–52. Format specifications available at ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt
  15. Intelisano A, Mazzini L, Notarantonio A, Landenna S, Zin A, Scaciga L, Marradi L (2008) Recent flight experiences of TAS-I on-board navigation equipments. In: Proceedings of the 4th ESA workshop on satellite navigation user equipment technologies, NAVITEC’2008, 10–12 Dec 2008, Noordwijk, The NetherlandsGoogle Scholar
  16. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1): 47–60. doi: 10.1007/s00190-006-0029-9 CrossRefGoogle Scholar
  17. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10): 1612–1619. doi: 10.1016/j.asr.2007.03.012 CrossRefGoogle Scholar
  18. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12): 1145–1162. doi: 10.1007/s00190-009-0333-2 CrossRefGoogle Scholar
  19. Jäggi A, Bock H, Floberghagen R (2010) GOCE orbit predictions for SLR tracking. GPS Solut 15(2): 129–137. doi: 10.1007/s10291-010-0176-6 CrossRefGoogle Scholar
  20. Jäggi A, Bock H, Prange L, Meyer U, Beutler G (2011) GPS-only gravity field recovery using GOCE, CHAMP, or GRACE. Adv Space Res 47(6): 1020–1028. doi: 10.1016/j.asr.2010.11.008 CrossRefGoogle Scholar
  21. Koop R, Gruber T, Rummel R (2006) The status of the GOCE high-level processing facility. In: Proceedings of the 3rd GOCE User Workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 199–205Google Scholar
  22. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dyn 56: 394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  23. McCarthy DD, Petit G (2004) IERS conventions 2003. IERS technical note no. 32. Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  24. Montenbruck O, van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3): 261–271. doi: 10.1016/j.ast.2005.01.003 CrossRefGoogle Scholar
  25. Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12(4): 289–299. doi: 10.1007/s10291-008-0091-2 CrossRefGoogle Scholar
  26. Niell AE (1996) Global mapping functions for the atmosphere delay of radio wavelengths. J Geophys Res 101(B2): 3227–3246CrossRefGoogle Scholar
  27. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Regguzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F (2011) First GOCE gravity field models derived by three different approaches. J Geod. doi: 10.1007/s00190-011-0467-x
  28. Pavlis D, Poulouse S, McCarthy J (2006) GEODYN Operations Manual. Contractor report, SGT Inc., Greenbelt, MDGoogle Scholar
  29. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2): 135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  30. Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2010) AIUB-CHAMP02S: the influence of GNSS model changes for gravity field recovery using spaceborne GPS. Adv Space Res 45(2): 215–224. doi: 10.1016/j.asr.2009.09.020 CrossRefGoogle Scholar
  31. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2): 129–134. doi: 10.1016/S0273-1177(02)00276-4 CrossRefGoogle Scholar
  32. Rothacher M, Schmid R (2010) ANTEX: the antenna exchange format, version 1.4. IGS Central Bureau Information System, ftp://ftp.igs.org/pub/station/general/antex14.txt
  33. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions—principles and aims. J Geodyn 33: 3–20. doi: 10.1016/S0264-3707(01)00050-3 CrossRefGoogle Scholar
  34. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  35. Standish EM (1998) JPL planetary and lunar ephemerides, DE405/LE405. JPL IOM 312.F-98-048.Google Scholar
  36. Švehla D, Rothacher M (2005) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) A window on the future of geodesy, vol 128. Springer, Berlin, pp 181–188. doi: 10.1007/3-540-27432-4_32 Google Scholar
  37. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9): L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  38. van den IJssel J, Visser P, Rodriguez EP (2003) CHAMP precise orbit determination using GPS data. Adv Space Res 31(8): 1889–1895. doi: 10.1016/S0273-1177(03)00161-3 CrossRefGoogle Scholar
  39. van Helleputte T (2004) User manual for the GHOST orbit determination software. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, fDS-SUM-3110Google Scholar
  40. Visser P, van den IJssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Hugentobler U, Švehla D (2006) Rapid and precise orbit determination for the GOCE satellite. In: Proceedings of the 3rd GOCE user workshop, 6–8 Nov 2006, Frascati, Italy, ESA SP-627, pp 235–239Google Scholar
  41. Visser P, van den IJssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Švehla D, Hugentobler U, Heinze M (2009) Orbit determination for the GOCE satellite. Adv Space Res 43(5): 760–768. doi: 10.1016/j.asr.2008.09.016 CrossRefGoogle Scholar
  42. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi: 10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Heike Bock
    • 1
  • Adrian Jäggi
    • 1
  • Ulrich Meyer
    • 1
  • Pieter Visser
    • 2
  • Jose van den IJssel
    • 2
  • Tom van Helleputte
    • 2
  • Markus Heinze
    • 3
  • Urs Hugentobler
    • 3
  1. 1.Astronomical Institute of the University of BernBernSwitzerland
  2. 2.Department of Earth Observation and Space SystemsDelft University of TechnologyDelftThe Netherlands
  3. 3.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany

Personalised recommendations