Journal of Geodesy

, Volume 85, Issue 12, pp 949–964 | Cite as

Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data

  • Andrzej Krankowski
  • Irina Zakharenkova
  • Anna Krypiak-Gregorczyk
  • Irk I. Shagimuratov
  • Pawel Wielgosz
Open Access
Original Article


This research is motivated by the recent IGS Ionosphere Working Group recommendation issued at the IGS 2010 Workshop held in Newcastle, UK. This recommendation encourages studies on the evaluation of the application of COSMIC radio occultation profiles for additional IGS global ionosphere map (GIM) validation. This is because the reliability of GIMs is crucial to many geodetic applications. On the other hand, radio occultation using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. However, systematic validation work is still needed before using this powerful technique for sounding the ionosphere on a routine basis. In this paper, we analyze the properties of the ionospheric electron density profiling retrieved from COSMIC radio occultation measurements. A comparison of radio occultation data with ground-based measurements indicates that COSMIC profiles are usually in good agreement with ionosonde profiles, both in the F2 layer peak electron density and the bottom side of the profiles. For this comparison, ionograms recorded by European ionospheric stations (DIAS network) in 2008 were used.


FORMOSAT-3/COSMIC GPS Ionosonde Ionosphere Radio occultation 


  1. Belehaki A, Cander LJ, Zolesi B, Bremer J, Juren C, Stanislawska I, Dialetis D, Hatzopoulos M (2005) DIAS Project: the establishment of a European digital upper atmosphere server. J Atmos Solar-Terr Phys 67(12): 1092–1099CrossRefGoogle Scholar
  2. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber Ch (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32: L13806. doi:10.1029/2005GL023109 CrossRefGoogle Scholar
  3. Colomb FR, Alonso C, Hofmann C, Nollmann I (2004) SAC-C mission, an example of international cooperation. Adv Space Res 34(10): 2194–2199CrossRefGoogle Scholar
  4. Garcia-Fernandez M, Hernandez-Pajares M, Juan M, Sanz J (2003) Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information. J Geophys Res 108: 1338–1344. doi:10.1029/2003JA009952 CrossRefGoogle Scholar
  5. Garcia-Fernandez M, Saito A, Juan JM, Tsuda T (2005) Three-dimensional estimation of electron density over Japan using the GEONET GPS network combined with SAC-C data and ionosonde measurements. J Geophys Res 110: A11304. doi:10.1029/2005JA011037 CrossRefGoogle Scholar
  6. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33: 175–190. doi:10.1029/97RS03183 CrossRefGoogle Scholar
  7. Hernandez-Pajares M, Juan JM, Sanz J (2000) Improving the Abel in version by adding ground GPS data to LEO radio occultations in the ionospheric sounding. Geophys Res Lett 27: 2743–2746. doi:10.1029/2000GL000032 Google Scholar
  8. Hocke K, Igarashi K (2002) Structure of the Earth’s lower ionosphere observed by GPS/MET radio occultation. J Geophys Res 107: A5. doi:10.1029/2001JA900158 Google Scholar
  9. Jakowski N (2005) Ionospheric GPS Radio Occultation measurements on board CHAMP. GPS Solut 9: 88–95. doi:10.1007/s10291-005-0137-7 CrossRefGoogle Scholar
  10. Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan TK (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10): 1457. doi:10.1029/2001GL014364 CrossRefGoogle Scholar
  11. Kirchengast G, Foelsche U, Steiner A (eds) (2004) Occultations for probing atmosphere and climate. ISBN:978-3-540-22350-4Google Scholar
  12. Klobuchar JA, Kunches JM (2000) Eye on the ionosphere: the spatial variability of ionospheric range delay. GPS Solut 3(3): 70–74. doi:10.1007/PL00012808 CrossRefGoogle Scholar
  13. Kuo Y-H, Wee T-K, Sokolovskij S, Rocken C, Schreiner W, Hunt D, Anthes RA (2004) Inversion and error estimation of GPS radio occultation data. J Meteorol Soc Jpn 82(1B): 507–531CrossRefGoogle Scholar
  14. Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, Zeng Z, Roble RG, Wu Q, Kuo Y-H, Holt JM, Zhang S-R, Hysell DL, Rodrigues FS, Lin CH (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112: A7. doi:10.1029/2006JA012240 Google Scholar
  15. Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, Chen CH, Hsiao CC (2007) Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys Res Lett 34: L19101. doi:10.1029/2007GL030741 CrossRefGoogle Scholar
  16. Lin CH, Liu JY, Hsiao CC, Liu CH, Cheng CZ, Chang PY, Tsai HF, Fang TW, Chen CH, Hsu ML (2009) Global ionospheric structure imaged by FORMOSAT-3/COSMIC: early results. Terr Atmos Ocean Sci 20: 171–179. doi:10.3319/TAO.2008.01.18.01(F3C) CrossRefGoogle Scholar
  17. Liou YA, Pavelyev AG, Matyugov SS, Yakovlev OI, Wickert J (2010) Radio occultation method for remote sensing of the atmosphere and ionosphere. InTech. ISBN:978-953-7619-60-2Google Scholar
  18. Liu L, Zhao B, Wan W, Ning B, Zhang M-L, He M (2009) Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res 114: A2. doi:10.1029/2008JA013819 Google Scholar
  19. McNamara LF (2006) Quality figures and error bars for autoscaled Digisonde vertical incidence ionograms. Radio Sci 41: RS4011. doi:10.1029/2005RS003440 CrossRefGoogle Scholar
  20. Reinisch BW, Huang X (2001) Deducing topside profiles and total electron content from bottomside ionograms. Adv Space Res 27(1): 23–30CrossRefGoogle Scholar
  21. Reinisch BW, Huang X, Galkin IA, Paznukhov V, Kozlov A (2005) Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. J Atmos Solar-Terr Phys 67: 1054–1062CrossRefGoogle Scholar
  22. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34: 949–966. doi:10.1029/1999RS900034 CrossRefGoogle Scholar
  23. Straus PR, Anderson PC, Danaher JE (2003) GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett 30(8): 1436. doi:10.1029/2002GL016503 CrossRefGoogle Scholar
  24. Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods. Springer, New York, pp 137–146Google Scholar
  25. Tsai LC, Tsai WH, Schreiner WS, Berkey FT, Liu JY (2001) Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 53: 193–205Google Scholar
  26. Tsai LC, Liu CH, Hsiao TY (2009) Profiling of ionospheric electron density based on FormoSat-3/COSMIC data: results from the intense observation period. Terr Atmos Ocean Sci 20: 181–191. doi:10.3319/TAO.2007.12.19.01(F3C) CrossRefGoogle Scholar
  27. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C-Z, Healy SB, Heise S, Huang C-Y, Jakowski N, Kohler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP. GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20(1): 35–50CrossRefGoogle Scholar
  28. Wu X, Hu X, Gong X, Zhang X, Wang X (2009) Analysis of inversion errors of ionospheric radio occultation. GPS Solut 13(N3): 231–239. doi:10.1007/s10291-008-0116-x CrossRefGoogle Scholar
  29. Yue X, Wan W, Liu L, Mao T (2007) Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and incoherent scatter radar observations. Ann Geophys 25: 1815–1825CrossRefGoogle Scholar
  30. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo Y-H (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28: 217–222CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Andrzej Krankowski
    • 1
  • Irina Zakharenkova
    • 1
    • 2
  • Anna Krypiak-Gregorczyk
    • 1
  • Irk I. Shagimuratov
    • 2
  • Pawel Wielgosz
    • 1
  1. 1.Geodynamics Research LaboratoryUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  2. 2.West Department of IZMIRANKaliningradRussia

Personalised recommendations