Journal of Geodesy

, Volume 85, Issue 10, pp 679–705 | Cite as

GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations

  • M. Rothacher
  • D. Angermann
  • T. Artz
  • W. Bosch
  • H. Drewes
  • M. Gerstl
  • R. Kelm
  • D. König
  • R. König
  • B. Meisel
  • H. Müller
  • A. Nothnagel
  • N. Panafidina
  • B. Richter
  • S. Rudenko
  • W. Schwegmann
  • M. Seitz
  • P. Steigenberger
  • S. Tesmer
  • V. Tesmer
  • D. Thaller
Original Article

Abstract

In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5–7 mm for the positions and 1.0–1.5 mm/year for the rates. The residuals of the station positions are about 3 mm and between 0.5 and 1.0 mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 μas (equivalent to 1.5 mm at the Earth’s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5 mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0 μas) than VLBI (109.0/100.7 μas) or GPS (98.0/99.5 μas) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.

Keywords

Global Geodetic Observing System GGOS Space-geodetic techniques Combination Geodetic-geophysical time series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B9401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm M, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI—a terrestrial reference frame realization 2003. In: DGK Reihe B, vol 313. Deutsche Geodätische Kommission, MünchenGoogle Scholar
  3. Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computations. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 595–602. doi:10.1007/978-3-540-49350-1_86 Google Scholar
  4. Bizouard C, Gambis D (2009) The combined solution C04 for earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes H (eds) Geodetic Reference Frames. IAG Symposia, vol 134. Springer, Berlin, pp 265–270. doi:10.1007/978-3-642-00860-3_41 CrossRefGoogle Scholar
  5. Blewitt G, Bock Y, Kouba J (1994) Constraining the IGS polyhedron by distributed processing. In: IGS Workshop Proceedings: densification of ITRF through regional GPS networks. JPL, Pasadena, pp 21–37Google Scholar
  6. Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solutions. In: Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting, no. 79 in Geowissenschaftliche Mittteilungen, pp 82–87Google Scholar
  7. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3): 201–219. doi:10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  8. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  9. Bosch W (1997) Geoid and orbit corrections from crossover satellite altimetry. Tech Rep 60/97, Deutsches Geodätisches Forschungsinstiut, MünchenGoogle Scholar
  10. Bray T, Paoli J, Sperberg-McQueen C, Maler E, Yergeau F, Cowan J (2006) Extensible Markup Language (XML) 1.1, 2nd edn. W3C recommendation 16 August 2006, edited in place 29 September 2006 ed. http://www.w3.org/TR/2006/REC-xml11-20060816
  11. Brunner F, Rüeger J (1992) Theory of the local scale parameter method for EDM. Bull Geod 66(4): 355–364. doi:10.1007/BF00807420 CrossRefGoogle Scholar
  12. Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  13. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  14. Drewes H, Angermann D, Gerstl M, Krügel M, Meisel B, Seemüller W (2006) Analysis and refined computations of the International Terrestrial Reference Frame. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 343–356. doi:10.1007/3-540-29522-4_23 CrossRefGoogle Scholar
  15. Elgered G, Davis J, Herring T, Shapiro I (1991) Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay. J Geophys Res 96(B4): 6541–6555. doi:10.1029/90JB00834 CrossRefGoogle Scholar
  16. Feissel-Vernier M (2003) Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. A&A 403(1): 105–110. doi:10.1051/0004-6361:20030348 CrossRefGoogle Scholar
  17. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6): 331–346. doi:10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  18. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342 CrossRefGoogle Scholar
  19. Gambis D (2004) Monitoring earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78(4–5): 295–303. doi:10.1007/s00190-004-0394-1 CrossRefGoogle Scholar
  20. Gendt G, Dick G, Soehne W (1999) GFZ Analysis Center of IGS—annual report 1998. In: Gowey K, Neilan R, Moore A (eds) International GPS Service for Geodynamics 1998 technical reports. IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, CA, pp 79–87Google Scholar
  21. Gerstl M (1997) Parameterschätzung in DOGS-OC. DGFI Interner Bericht Nr. MG/01/1996/DGFI, 2nd ednGoogle Scholar
  22. Gerstl M, Kelm R, Müller H, Ehrnsprerger W (2001), DOGS-CS Kombination und Lösung großer Gleichungssysteme. DGFI Interner Bericht Nr. MG/01/1995/DGFIGoogle Scholar
  23. Gross R, Fukumori I, Menemenlis D (2005) Atmospheric and oceanic excitation of decadal-scale Earth orientation variations. J Geophys Res 110: B09405. doi:10.1029/2004JB003565 CrossRefGoogle Scholar
  24. Hawarey M, Hobiger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32: L11304. doi:10.1029/2005GL022729 CrossRefGoogle Scholar
  25. Herring T, Mathews P, Buffett B (2002) Modeling of nutation-precession: very long baseline interferometry results. J Geohphys Res 107(B4). doi:10.1029/2001JB000165
  26. Hugentobler U, Schaer S, Dach R, Meindl M, Urschl C (2005) Routine processing of combined solutions for GPS and GLONASS at CODE. In: Meindl M (ed) Celebrating a decade of the International GNSS Service. Workshop and Symposium 2004. Astronomical Institute, University of Berne, Berne, SwitzerlandGoogle Scholar
  27. Kelm R (2009) Rigorous variance component estimation in weekly intra-technique and inter-technique combination for global terrestrial reference frame. In: Drewes H (eds) Geodetic Reference Frames. IAG symposia, vol 134. Springer, Berlin, pp 39–44. doi:10.1007/978-3-642-00860-3_6 CrossRefGoogle Scholar
  28. König R, Müller H (2007) Station coordinates, Earth rotation parameters, and low degree harmonics from SLR within GGOSD-D. In: Luck J, Moore C, Wilson P (eds) Extending the range. Proceedings 15th International Workshop on Laser Ranging. EOS Space Systems Pty Ltd, pp 106–109Google Scholar
  29. Kouba J (2005) Comparison of polar motion with oceanic and atmospheric angular momentum time series for 2-day to Chandler periods. J Geod 79(1–3): 33–42. doi:10.1007/s00190-005-0440-7 CrossRefGoogle Scholar
  30. Kouba J, Vondrak J (2005) Comparison of length of day with oceanic and atmospheric angular momentum series. J Geod 79(4–5): 256–268. doi:10.1007/s00190-005-0467-9 CrossRefGoogle Scholar
  31. Krügel M, Angermann D (2007) Frontiers in the combination of space geodetic techniques. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 158–165. doi:10.1007/978-3-540-49350-1_25 Google Scholar
  32. Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod 81(6–8): 515–527. doi:10.1007/s00190-006-0127-8 CrossRefGoogle Scholar
  33. Larsen G, Hansen K (2004) Database on wind characteristics. IEA R&D wind annex XVII. Tech Rep Risø-R-1472(N) Roskilde, DenmarkGoogle Scholar
  34. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6): 394–415. doi:10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  35. Ma C, Sauber JM, Clark TA, Ryan JW, Bell LJ, Gordon D, Himwich WE (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res 95(B13): 21991–22011. doi:10.1029/JB095iB13p21991 CrossRefGoogle Scholar
  36. Ma C, Arias E, Eubanks T, Fey A, Gontier A-M, Jacobs C, Sovers O, Archinal B, Charlot P (1998) The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astron J 116(1): 516–546. doi:10.1086/300408 CrossRefGoogle Scholar
  37. MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044. doi:10.1029/95GL00887 CrossRefGoogle Scholar
  38. MacMillan D (2007) Determination of the reference frame scale with VLBI. Geophy Res Abstr 9(04545)Google Scholar
  39. Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geohphys Res 107(B4). doi:10.1029/2001JB000390
  40. McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Tech Note 32. Verl. Bundesa. Kart., FrankfurtGoogle Scholar
  41. Meisel B, Angermann D, Krügel M (2009) Influence of time variable effects in station positions on the terrestrial reference frame. In: Drewes H (eds) Geodetic Reference Frames. IAG Symposia, vol 134. Springer, Berlin, pp 89–93. doi:10.1007/978-3-642-00860-3_14 CrossRefGoogle Scholar
  42. Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31: L14602. doi:10.1029/2004GL020308 CrossRefGoogle Scholar
  43. Nothnagel A, Schnell D (2008) The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations. J Geod 82(12): 863–869. doi:10.1007/s00190-008-0212-2 CrossRefGoogle Scholar
  44. Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI telescopes. In: Lanotte R, Bianco G (eds) Proceedings of the 10th Working Meeting on European VLBI for Geodesy and Astrometry. Agenzia Spatiale Italiana, Matera, pp 121–133Google Scholar
  45. Nothnagel A, Cho J, Roy A, Haas R (2007) WVR calibration applied to European VLBI observing sessions. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 152–157Google Scholar
  46. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2): 125–143. doi:10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  47. Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System: meeting the requirements of a global society on a changing planet in 2020. Springer, BerlinGoogle Scholar
  48. Pottiaux E, Warnant R (2002) First comparisons of precipitable water vapour estimation using GPS and water vapour radiometers at the Royal Observatory of Belgium. GPS Sol 6(1–2): 11–17. doi:10.1007/s10291-002-0007-5 CrossRefGoogle Scholar
  49. Ray J, Griffiths J (2008) Overview of IGS products and analysis center modeling. IGS 2008 analysis center workshop. http://igscb.jpl.nasa.gov/overview/pubs/IGSWorkshop2008/docs/igs08-acs+products.ppt
  50. Saastamoinen J (1972) Atmosperic correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysical Monograph, vol 15. American Geophysical Union, Washington, pp 247–251Google Scholar
  51. Salstein D, Kann D, Miller A, Rosen R (1993) Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: a meteorological data center with geodetic applications. Bull Am Meteor Soc 74: 67–80CrossRefGoogle Scholar
  52. Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2): 127–430. doi:10.1016/S0273-1177(02)00278-8 CrossRefGoogle Scholar
  53. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  54. Schön S, Kutterer H (2006) A comparative analysis of uncertainty modelling in GPS data analysis. In: Tregoning P, Rizos R (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 137–142. doi:10.1007/978-3-540-49350-1_22 Google Scholar
  55. Schwegmann W, Richter B (2006) IERS data and information system. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 321–332. doi:10.1007/3-540-29522-4_21 CrossRefGoogle Scholar
  56. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems. In: DGK Reihe C, vol 630. Deutsche Geodätische Kommission, MünchenGoogle Scholar
  57. Seitz F, Krügel M (2009) Inverse model approach for vertical load deformations in consideration of crustal inhomogeneities. In: Drewes H (eds) Geodetic Reference Frames, IAG Symposia, vol 134. Springer, Berlin, pp 23–29. doi:10.1007/978-3-642-00860-3_4
  58. Skurikhina E (2001) On computation of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds) Proceedings of the 15th Working Meeting on European VLBI for Geodesy and Astrometry. Institut d’Estudis Espacials de Catalunya, Consejo Superior de Investigaciones Cientificas, Barcelona, pp 124– 130Google Scholar
  59. Springer T (2000) Modelling and validating orbits and clocks using the Global Positioning System. Geod Geophys Arb in der Schweiz 60, Zürich, SwitzerlandGoogle Scholar
  60. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747 CrossRefGoogle Scholar
  61. Steigenberger P, Boehm J, Tesmer V (2009a) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi:10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  62. Steigenberger P, Rothacher M, Fritsche M, Rülke A, Dietrich R (2009b) Quality of reprocessed GPS satellite orbits. J Geod 83(3–4): 241–248. doi:10.1007/s00190-008-0228-7 CrossRefGoogle Scholar
  63. Thaller D, Tesmer V, Krügel M, Steigenberger P, Dach R, Rothacher M (2008) Combining VLBI intensive with GPS rapid solutions for deriving a stable UT time series. In: Behrend D, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2008 General Meeting Proceedings, pp 8–13Google Scholar
  64. Titov O, Tesmer V, Boehm J (2004) Occam v6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, NASA, Greenbelt, pp 267–271Google Scholar
  65. Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of Very Long Baseline Interferometry to ITRF2005. J Geod 81(6–8): 553–564. doi:10.1007/s00190-006-0117-x CrossRefGoogle Scholar
  66. Zhu S, Reigber C, Koenig R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2): 103–108. doi:10.1007/s00190-004-0379-0 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Rothacher
    • 1
    • 2
  • D. Angermann
    • 6
  • T. Artz
    • 5
  • W. Bosch
    • 6
  • H. Drewes
    • 6
  • M. Gerstl
    • 6
  • R. Kelm
    • 6
  • D. König
    • 1
  • R. König
    • 1
  • B. Meisel
    • 6
  • H. Müller
    • 6
  • A. Nothnagel
    • 5
  • N. Panafidina
    • 1
    • 2
  • B. Richter
    • 8
  • S. Rudenko
    • 1
  • W. Schwegmann
    • 8
    • 9
  • M. Seitz
    • 6
  • P. Steigenberger
    • 1
    • 3
  • S. Tesmer
    • 5
  • V. Tesmer
    • 6
    • 7
  • D. Thaller
    • 1
    • 4
  1. 1.Helmholtz-Zentrum PotsdamDeutsches GeoForschungsZentrumPotsdamGermany
  2. 2.Eidgenössische Technische HochschuleInstitut für Geodäsie und PhotogrammetrieZurichSwitzerland
  3. 3.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  4. 4.Astronomisches InstitutUniversität BernBernSwitzerland
  5. 5.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  6. 6.Deutsches Geodätisches ForschungsinstitutMunichGermany
  7. 7.OHB-System AGBremenGermany
  8. 8.Bundesamt für Kartographie und GeodäsieFrankfurt am MainGermany
  9. 9.KarlsruheGermany

Personalised recommendations