Journal of Geodesy

, 85:443 | Cite as

Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08

  • Denise Dettmering
  • Robert Heinkelmann
  • Michael Schmidt
Original Article

Abstract

The ionosphere is a dispersive medium for microwaves, and most space-geodetic techniques using two or more signal frequencies can be applied to extract information on ionospheric parameters, including terrestrial as well as satellite-based GNSS, DORIS, altimetry, and VLBI. Because of their different sensitivity regarding ionization, their different spatial and temporal data distribution, and their different signal paths, a joint analysis of all observation types seems reasonable and promises the best results for ionosphere modeling. However, it has turned out that there exist offsets between ionospheric observations of the diverse techniques mainly caused by calibration uncertainties or model errors. Direct comparisons of the information from different data types are difficult because of the inhomogeneous measurement epochs and locations. In the approach presented here, all measurements are combined into one ionosphere model of vertical total electron content (VTEC). A variance component estimation is applied to take into account the different accuracy levels of the observations. In order to consider systematic offsets, a constant bias term is allowed for each observation group. The investigations have been performed for the time interval of the CONT08 campaign (2 weeks in August 2008) in a region around the Hawaiian Islands. Almost all analyzed observation techniques show good data sensitivity and are suitable for VTEC modeling in case the systematic offsets which can reach up to 5 TECU are taken into account. Only the Envisat DORIS data cannot provide reliable results.

Keywords

Ionosphere Variance component estimation Inter-technique biases 

References

  1. AVISO (2008) AVISO and PODAAC user handbock. IGDR and GDR Jason products. SMM-MU-M5-OP-13184-CN, JPL D-21352Google Scholar
  2. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4): 599–609CrossRefGoogle Scholar
  3. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J Geod 79(4-5): 175–188CrossRefGoogle Scholar
  4. CLS (2010) Jason-2 validation and cross calibration activities (Jason-2 annual validation report 2009). SALP-RP-MA-EA-21794-CLS, CLS.DOS/NT/10-004Google Scholar
  5. Dettmering D (2003) Die Nutzung des GPS zur dreidimensionalen Ionosphärenmodellierung. Department of Geodesy and Geoinformatic, University of Stuttgart, StuttgartGoogle Scholar
  6. Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011) Combination of different space-geodetic observations for regional ionosphere modeling. J Geod. doi:10.1007/s00190-010-0423-1
  7. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83: 191–198CrossRefGoogle Scholar
  8. ESA (2007) ENVISAT RA2/MWR product handbook, issue 2.2Google Scholar
  9. Fong C-J, Yen NL, Chu C-H, Yang S-K, Shiau W-T, Huang C-Y, Chi S, Chen S-S, Liou Y-A, Kuo Y-H (2009) FORMOSAT-3/COSMIC spacecraft constellation system, mission results, and prospect for follow-on mission. Terr Atmos Ocean Sci 20: 1–19CrossRefGoogle Scholar
  10. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC map: a reliable source of ionospheric information since 1998. J Geod 83(3–4): 263–275CrossRefGoogle Scholar
  11. Hobiger T, Todorova S, Schuh H (2004) Ionospheric parameters obtained by different space geodetic techniques during CONT02. In: IVS 2004 general meeting proceedings, pp 442–446Google Scholar
  12. Hobiger T, Kondo T, Schuh H (2006) Very long baseline interferometry as a tool to probe the ionosphere. Radio Sci 41(1): RS1006CrossRefGoogle Scholar
  13. Hugentobler U, Schaer S, Beutler S, Bock H, Dach R, Jäggi A, Meindl M, Urschl C, Mervart L, Rothacher M, Wild U, Wiget A, Brockmann E, Ineichen D, Weber G, Habrich H, Boucher C (2002) CODE IGS Analysis Center technical report 2002Google Scholar
  14. IERS (2010) IERS conventions update. http://tai.bipm.org/iers/convupdt/convupdt_c9.html
  15. Iijima BA, Harris IL, Ho CM, Lindqwister UJ, Mannucci AJ, Pi X, Reyes MJ, Sparks LC, Wilson BD (1999) Automated daily process for global ionospheric total electron content maps and satellite ocean ionospheric calibration based on Global Positioning System. J Atmos Solar Terr Phys 61(16): 1205–1218CrossRefGoogle Scholar
  16. Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5): 259–268CrossRefGoogle Scholar
  17. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8): 379–387CrossRefGoogle Scholar
  18. Schmidt M (2007) Wavelet modelling in support of IRI. Adv Space Res 39(5): 932–940CrossRefGoogle Scholar
  19. Schmidt M, Karslioglu MO, Zeilhofer C (2008) Regional multi-dimensional modeling of the ionosphere from satellite data. In: Karslioglu MO, Nuhutcu M, Erdogan E (eds) Monitoring and modeling of the ionosphere and troposphere. Proceedings of the Turkish National Geodetic Commission scientific meeting 2007, ISBN 978-9944-89-571-2, Ankara, pp 88–92Google Scholar
  20. Sekido M, Kondo T, Kawai E (2003) Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data. Radio Sci 38(4). doi:10.1029/2000RS002620
  21. Todorova S, Schuh H, Hobiger T, Hernández-Pajares M (2007) Global models of the ionosphere obtained by integration of GNSS and satellite altimetry data. Österreichische Zeitschrift für Vermessung und Geoinformation (VGI), 95. Jahrgang, Heft, pp 80–89Google Scholar
  22. UCAR. COSMIC Data Analysis and Archive Center. http://cosmic-io.cosmic.ucar.edu/cdaac/index.html
  23. Wilson BD, Mannucci AJ (1994) Extracting ionospheric measurements from GPS in the presence of anti-spoofing. In: Proceedings of the ION GPS-94, Salt Lake CityGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Denise Dettmering
    • 1
  • Robert Heinkelmann
    • 1
  • Michael Schmidt
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany

Personalised recommendations