Journal of Geodesy

, 85:819 | Cite as

First GOCE gravity field models derived by three different approaches

  • Roland Pail
  • Sean Bruinsma
  • Federica Migliaccio
  • Christoph Förste
  • Helmut Goiginger
  • Wolf-Dieter Schuh
  • Eduard Höck
  • Mirko Reguzzoni
  • Jan Martin Brockmann
  • Oleg Abrikosov
  • Martin Veicherts
  • Thomas Fecher
  • Reinhard Mayrhofer
  • Ina Krasbutter
  • Fernando Sansò
  • Carl Christian Tscherning
Original Article

Abstract

Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10 cm in terms of geoid heights, and 3 mGal in terms of gravity anomalies, globally at a resolution of 100 km (degree/order 200).

Keywords

Gravity field GOCE Gradiometry GPS Spherical harmonics Global gravity model 

References

  1. Albertella A, Migliaccio F, Reguzzoni M, Sansò F (2004) Wiener filters and collocation in satellite gradiometry. In: Sansò F (ed) International Association of Geodesy Symposia, “V Hotine-Marussi Symposium on Mathematical Geodesy”, vol 127, 17–21 June 2002, Matera, Italy. Springer, Berlin, pp 32–38Google Scholar
  2. Andersen OA, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114. doi:10.1029/2008JC005179
  3. Badura T (2006) Gravity field analysis from satellite orbit information applying the energy integral approach. Dissertation, Graz University of TechnologyGoogle Scholar
  4. Beutler G (2005) Methods of celestial mechanics. Physical, mathematical, and numerical principles, vol I. Springer. ISBN:978-3-540-40749-2Google Scholar
  5. Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach—theoretical foundations. J Geod 84(10): 605–624. doi:10.1007/s00190-010-0401-7 CrossRefGoogle Scholar
  6. Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, Gruber T, König R, Massmann F-H, Raimondo JC, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27(22): 3611–3614CrossRefGoogle Scholar
  7. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38: 1. doi:10.1029/2010GL045633 CrossRefGoogle Scholar
  8. Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geod (submitted)Google Scholar
  9. Bouman J, Fiorot S, Fuchs M, Gruber T, Rispens S, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE gravity gradients along the orbit. J Geod. doi:10.1007/s00190-011-0464-0
  10. Boxhammer CH, Schuh W-D et al (2006) GOCE gravity field modeling: computational aspects—free kite numbering scheme. In: Rummel R (ed.) Observation of the Earth system from Space. Springer, Berlin, pp 209–224CrossRefGoogle Scholar
  11. Brockmann JM, Kargoll B, Krasbutter I, Schuh W-D, Wermuth M (2010) GOCE data analysis: from calibrated measurements to the global Earth gravity field. In: Flechtner et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 213–229. ISBN 978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_17
  12. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686. ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN: 1609-042XGoogle Scholar
  13. Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OhioGoogle Scholar
  14. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth explorer core mission. In: Beutler et al (eds) Earth gravity field from Space—from sensors to Earth Science, Space Sciences Series of ISSI, vol 18. Kluwer, Dordrecht, pp 419–432. ISBN:1-4020-1408-2Google Scholar
  15. EGG-C (2010a) GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4.2. European Space Agency, Noordwijk. http://earth.esa.int/pub/ESA_DOC/GOCE/Product_Data_Handbook_4.1.pdf
  16. EGG-C (2010b) GOCE Standards. GP-TN-HPF-GS-0111, Issue 3.2. European Space Agency, Noordwijk. http://earth.esa.int/pub/ESA_DOC/GOCE/GOCE_Standards_3.2.pdf
  17. Flechtner F, Dahle C, Neumayer KH, König R, Förste C (2010) The Release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 41–58. ISBN:978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_4
  18. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82: 331–346. doi:10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  19. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, Koenig R, Meyer U (2008b) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union (Vienna, Austria 2008), Geophys Res Abstr 10, Abstract No. EGU2008-A-06944Google Scholar
  20. Gruber T (2009) Evaluation of the EGM2008 gravity field by means of GPS-levelling and sea surface topography solutions; External quality evaluation reports of EGM08. Newton’s Bull 4:3–17. Bureau Gravimétrique International (BGI)/International Geoid Service (IGeS). ISSN:1810–8555Google Scholar
  21. Gruber T, Visser P, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod (submitted)Google Scholar
  22. Ilk K-H, Löcher A (2005): The Use of Energy Balance Relations for Validation of Gravity Field Models and Orbit Determination Results. International Association of Geodesy Symposia, 2005, Vol. 128, Symposium G04, 494-499, doi:10.1007/3-540-27432-4_84
  23. Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2009) AIUB-GRACE02S—status of GRACE gravity field recovery using the celestial mechanics approach. In: Paper presented at the IAG Scientific Assembly 2009, Aug 31–Sept 4, 2009, Buenos Aires, ArgentinaGoogle Scholar
  24. Jäggi A, Bock H, Prange L, Meyer U, Beutler G (2010) GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv Space Res 47(6): 1020–1028. doi:10.1016/j.asr.2010.11.008 CrossRefGoogle Scholar
  25. Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75: 85–101CrossRefGoogle Scholar
  26. Kenyon SC, Pavlis NK (1997) The development of a global surface gravity data base to be used in the joint DMA/GSFC geopotential model. In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy. IAG symposia, vol 117. Springer, Heidelberg, pp 470–477Google Scholar
  27. Koch KH, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76: 259–268. doi:10.1007/s00190-002-0245-x CrossRefGoogle Scholar
  28. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH,Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olsen TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA technical paper NASA/TP-1998-206861. Goddard Space Flight Center, GreenbeltGoogle Scholar
  29. Marty J, Bruinsma, Balmino G, Abrikosov O, Förste C, Rothacher M (2005) Gravity field recovery with simulated GOCE observations. American Geophysical Union, Fall Meeting 2005, abstract #G33C-0052Google Scholar
  30. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of BonnGoogle Scholar
  31. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravitiy field model from short kinematical arcs of a one-year observation period. J Geod 78(7–8). doi:10.1007/s00190-004-0413-2
  32. Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk KH (2010a) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner et al. (eds) System Earth via geodetic-geophysical space techniques. Springer, New York. ISBN:978-3-642-10227-1. doi:10.1007/978-3-642-10228-8_13
  33. Mayer-Gürr T, Kurtenbach E, Eicker A (2010b) The satellite-only gravity field model ITG-Grace2010s. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
  34. Mayrhofer R, Pail R, Fecher T (2010) Quick-look gravity field solution as part of the GOCE quality assessment. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6;ISSN:1609-042XGoogle Scholar
  35. Metzler B, Pail R (2005) GOCE data processing: the spherical cap regularization approach. Stud Geophys Geod 49: 441–462. doi:10.1007/s11200-005-0021-5 CrossRefGoogle Scholar
  36. Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78: 304–313. doi:10.1007/s00190-004-0396-z CrossRefGoogle Scholar
  37. Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2007) On the use of gridded data to estimate potential coefficients. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 311–318. ISBN:92-9092-938-3; ISSN:1609-042XGoogle Scholar
  38. Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2009) An error model for the GOCE space-wise solution by Monte Carlo methods. In: Sideris MG (ed) IAG symposia, “Observing our Changing Earth”, vol 133. Springer, Berlin, pp 337–344. doi:10.1007/978-3-540-85426-5
  39. Migliaccio F, Reguzzoni M, Sansò F, Tscherning CC, Veicherts M (2010a) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN:1609-042XGoogle Scholar
  40. Migliaccio F, Reguzzoni M, Tselfes N (2010) A simulated space-wise solution using GOCE kinematic orbits. Bull Geod Geomat 1: 55–68Google Scholar
  41. Moritz H (1989) Advanced physical geodesy, 2nd edn. Wichmann Verlag, KarlsruheGoogle Scholar
  42. Oppenheim AV, Schafer RW (1999) Zeitdiskrete Signalverarbeitung. 3. Auflage. Oldenbourg Verlag, München WienGoogle Scholar
  43. Pail R (2005) A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geod 79: 231–241. doi:10.1007/s00190-005-0464-z CrossRefGoogle Scholar
  44. Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76: 462–474. doi:10.1007/s00190-002-0277-2 CrossRefGoogle Scholar
  45. Pail R, Metzler B, Lackner B, Preimesberger T, Höck E, Schuh WD, Alkathib H, Boxhammer Ch, Siemes Ch, Wermuth M (2007a) GOCE gravity field analysis in the framework of HPF: operational software system and simulation results. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 249–256Google Scholar
  46. Pail R, Metzler B, Preimesberger T, Lackner B, Wermuth M (2007b) GOCE quick-look gravity field analysis in the framework of HPF. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006, ESA SP-627. European Space Agency, Noordwijk, pp 325–332Google Scholar
  47. Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA Publication SP-686, ESA/ESTEC. ISBN:978-92-9221-250-6; ISSN:1609-042XGoogle Scholar
  48. Papoulis A (1984) Signal analysis. McGraw Hill, New YorkGoogle Scholar
  49. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. In: Paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008Google Scholar
  50. Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geod 83: 13–29. doi:10.1007/s00190-008-0225-x CrossRefGoogle Scholar
  51. Reigber Ch, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29: 14. doi:10.1029/2002GL015064 CrossRefGoogle Scholar
  52. Reigber C, Jochmann H, Wünsch J, Neumayer KH, Schwintzer P (2003) First insight into temporal gravity variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, New York, pp 128–133Google Scholar
  53. Rummel R, van Gelderen M, Koop R, Schrama E, Sansó F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Neth Geod Comm, Publications on Geodesy, vol 39, Delft, The NetherlandsGoogle Scholar
  54. Rummel R, Gruber T, Koop R (2004) High level processing facility for GOCE: products and processing strategy. In: Lacoste H (ed) Proceedings of the 2nd international GOCE user workshop “GOCE, The Geoid and Oceanography”. ESA SP-569, ESA. ISBN:92-9092-880-8; ISSN:1609-042XGoogle Scholar
  55. Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteil Geod Inst TU Graz, no 81, 156 ppGoogle Scholar
  56. Schuh WD (2002) Improved modelling of SGG-data sets by advanced filter strategies. ESA-Project “From Eötvös to mGal+”. Final report, ESA/ESTEC Contract 14287/00/NL/DC, WP 2. ESA, Noordwijk, pp 113–181Google Scholar
  57. Schuh WD, Boxhammer C, Siemes C (2006) Correlations, variances, covariances—from GOCE signals to GOCE products. In: Proceedings 3rd GOCE user workshop, Frascati, ESRIN, November 2006. ESA SP-627, European Space Agency, Noordwijk, pp 257–264Google Scholar
  58. Schuh WD, Brockmann JM, Kargoll B, Krasbutter I, Pail R (2010) Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In: Proceedings of the ESA living planet symposium, 28 June–2 July 2010, Bergen, NorwayGoogle Scholar
  59. Shako R, Förste C, Abrikosov O, Kusche J (2010) GOCE and its use for a high-resolution global gravity combination model. In: Flechtner F et al (eds) System Earth via geodetic-geophysical space techniques. Springer, New York, pp 231–242. ISBN:978-3-642-10227-1; ISBN:978-3-642-10228-8Google Scholar
  60. Siemes C (2008) Digital Filtering algorithms for decorrelation within large least squares problems. Dissertation, University of BonnGoogle Scholar
  61. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. DGK, C:527, Verlag der Bayerischen Akademie der Wissenschaften. ISBN:3-7696-9566-6; ISSN:0065-5325Google Scholar
  62. Sneeuw N, van Gelderen M (1997) The polar gap. In: Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in Earth Sciences, vol 65. Springer, Berlin, pp 559–568. doi:10.1007/BFb0011699
  63. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. American Geophysical Union. doi:10.1029/2004GL019920 Google Scholar
  64. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean Earth gravity model from GRACE. Eos Trans, AGU, 88(52). Fall Meet Suppl, Abstract G42A-03Google Scholar
  65. Tscherning CC (2001) Computation of spherical harmonic coefficients and their error estimates using least squares collocation. J Geod 75: 12–18. doi:10.1007/s001900000150 CrossRefGoogle Scholar
  66. Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geod 77: 207–216. doi:10.1007/s00190-003-0315-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roland Pail
    • 1
  • Sean Bruinsma
    • 2
  • Federica Migliaccio
    • 3
  • Christoph Förste
    • 4
  • Helmut Goiginger
    • 5
  • Wolf-Dieter Schuh
    • 6
  • Eduard Höck
    • 7
  • Mirko Reguzzoni
    • 3
  • Jan Martin Brockmann
    • 6
  • Oleg Abrikosov
    • 4
    • 8
  • Martin Veicherts
    • 9
  • Thomas Fecher
    • 1
  • Reinhard Mayrhofer
    • 5
  • Ina Krasbutter
    • 6
  • Fernando Sansò
    • 10
  • Carl Christian Tscherning
    • 9
  1. 1.Institute of Astronomical and Physical GeodesyTU MünchenMunichGermany
  2. 2.Department of Terrestrial and Planetary GeodesyCNES-DCT/SI/GSToulouse Cedex 9France
  3. 3.Politecnico di Milano, DIIAR-Sez. RilevamentoMilanItaly
  4. 4.Department 1: Geodesy and Remote Sensing, Section 1.2: Global Geomonitoring and Gravity FieldHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  5. 5.Institute of Theoretical Geodesy and Satellite GeodesyGraz University of TechnologyGrazAustria
  6. 6.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  7. 7.Department of Satellite Geodesy, Space Research InstituteAustrian Academy of SciencesGrazAustria
  8. 8.WesslingGermany
  9. 9.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  10. 10.Politecnico di Milano, Polo Regionale di ComoComoItaly

Personalised recommendations